Закон Вебера Фахнера

Автор работы: Пользователь скрыл имя, 27 Октября 2009 в 18:31, Не определен

Описание работы

1. Воздействие факторов среды обитания на организм человека: раздражители и ощущения, связь между ними (закон Вебера-Фехнера). Краткая характеристика сенсорных систем (анализаторов) человека: зрительной, слуховой и др.
2. Сухие и мокрые методы очистки атмосферных выбросов от пыли.
3. Микроклимат помещений: его параметры и нормирование. Влияние отклонения параметров микроклимата от нормативных значений на эффективность деятельности и здоровье человека.
4. Способы и средства защиты человека от ионизирующих излучений.

Файлы: 1 файл

Контрольная работа ОБЖ.doc

— 85.50 Кб (Скачать файл)

      Пылеосадительные камеры. Аппарат этого типа  представляет собой пустотелый или с горизонтальными полками во внутренней полости короб, в нижней части которого имеется бункер для сбора пыли. Поток запыленного  газа вводится в камеру через отверстие сравнительно небольшого диаметра, но при этом газ должен полность заполнять поперечное сечение камеры. Для соблюдения этого условия в конструкции камеры предусматриваются специальные  устройства (полки, перегородки). Загрязненный пылью газ пропускается через камеру  со скоростью 0,2 – 1,5 м/с, частицы пыли оседают под действием силы тяжести  в нижней части аппарата. Степень очистки газа в камерах не превышает 40 – 50%.

     Мокрые  пылеулавливающие аппараты работают по принципу улавливания частиц пыли поверхностью или объемом жидкости (воды). Эти аппараты характеризуются высокой степенью очистки от мелкодисперсной пыли. С их помощью можно очищать от пыли горячие и взрывоопасные газы. Эффективность работы  аппаратов мокрой очистки зависит от смачиваемости пыли, площади соприкосновения запыленного потока газа с поверхность жидкости. Если пыль плохо смачивается водой, то в воду добавляют поверхностно активные вещества (ПАВ). Для увеличения  поверхности контакта в аппараты мокрой очистки вводят специальные насадки из материалов  инертных по отношению к воде и загрязнениям (в промывных башнях) или  воду распыляют при помощи форсунок ( форсуночные скрубберы). Промывная башня является простейшим аппаратом  мокрой очистки газов от пыли. Она представляет собой колонну, заполненную кольцами Рашига или каким-либо другим инертным материалом.  К недостаткам мокрых пылеулавливающих аппаратов относятся: образование шлама, требующего дополнительных специальных систем для его переработки; вынос в атмосферу водяных паров; повышенная коррозия аппаратов и газоходов; ухудшение условий  рассеивания загрязнений через заводские трубы.  

3. Микроклимат помещений:  его параметры  и нормирование. Влияние  отклонения параметров  микроклимата от  нормативных значений  на эффективность  деятельности и здоровье человека.

     Микроклимат помещений – микроклиматические условия производственной среды (температура, влажность, давление, скорость движения воздуха, тепловое излучение) помещений, которые оказывают влияние на тепловую стабильность организма человека в процессе труда. Исследования показали, что человек может жить при атмосферном давлении 560-950 мм ртутного столба. Атмосферное давление на уровне моря 760 мм ртутного столба. При данном давлении человек испытывает комфортность. Как повышение, так и понижение атмосферного давления на большинство людей оказывает негативное влияние. С понижением давления ниже 700 мм ртутного столба наступает кислородное голодание, что сказывается на работе головного мозга и центральной нервной системы. Различают абсолютную и относительную влажность.Абсолютная влажность – это количество водяных паров, содержащихся в 1 м3. воздуха. Максимальная влажность Fmax – количество водяных паров (в кг), которое полностью насыщает 1 м3 воздуха при данной температуре (упругость водяных паров). Относительная влажность – это отношение абсолютной влажности к максимальной влажности, выраженной в процентах. Когда воздух полностью насыщен водяными парами, то есть A=Fmax (во время тумана), относительная влажность воздуха φ =100%. На организм человека и условия его работы оказывает влияние также средняя температура всех поверхностей, ограничивающих помещение, она имеет важное гигиеническое значение. Другим важным параметром является скорость воздуха. При повышенной температуре скорость воздуха способствует охлаждению, а при низких температурах переохлаждению, поэтому она должна быть ограниченной, в зависимости от температурной среды. Санитарно-гигиенические, метеорологические и микроклиматические условия не только влияют на состояние организма, но и определяют организацию труда, то есть, продолжительность и периодичность отдыха работника и обогрева помещения. Таким образом, санитарно-гигиенические параметры воздуха рабочей зоны могут быть физически опасными и вредными производственными факторами, оказывающими существенное влияние на технико-экономические показатели производства. Санитарные нормы микроклимата производственных помещений, по степени влияния на тепловое состояние организма человека, микроклиматические условия подразделяются на оптимальные и допустимые. Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года. Оптимальные микроклиматические условия - это такие условия микроклимата, которые при длительном и систематическом влиянии на человека обеспечивают сохранение теплового состояния организма без активной работы терморегуляции. Они сохраняют обеспечение самочувствие теплового комфорта и создание высокого уровня производительности труда. Допустимые микроклиматические условия, которые при длительном и систематическом влиянии на человека могут вызвать изменения теплового состояния организма, но нормализуются и сопровождаются напряженной работой механизмов терморегуляции в границах физиологической адаптации. При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности. Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека. Оптимальные условия микроклимата создаются для постоянных рабочих мест. 

4. Способы и средства  защиты человека  от ионизирующих  излучений.

      Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

      При изучении действия излучения на организм были выявлены следующие особенности:

  1. Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.
  2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.
  3. Действие от малых доз может суммироваться или накапливаться.
  4. Генетический эффект - воздействие на потомство.
  5. Различные органы живого организма имеют свою чувствительность к облучению.
  6. Не каждый организм (человек) в целом одинаково реагирует на облучение.
  7. Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

      Ионизирующее  излучение может оказывать влияние  на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

      Под действием ионизирующего излучения  вода, являющаяся составной частью организма человека, расщепляется и  образуются ионы с разными зарядами. Полученные свободные радикалы и  окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

      Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

      Смертельные поглощённые дозы для отдельных частей тела следующие:

  • голова - 20 Гр;
  • нижняя часть живота - 50 Гр;
  • грудная клетка -100 Гр;
  • конечности - 200 Гр.

      При облучении дозами, в 100-1000 раз превышающую  смертельную дозу, человек может  погибнуть во время облучения ("смерть под лучом").

      Биологические нарушения в зависимости от суммарной  поглощённой дозы излучения представлены в табл 3.

      В зависимости от типа ионизирующего  излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.

      В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:

      А - персонал, т.е. лица, постоянно или  временно работающие с источниками ионизирующего излучения;

      Б - ограниченная часть населения, т.е. лица, непосредственно не занятые  на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие  подвергаться воздействию ионизирующих излучений;

      В - всё население. 

      Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

      Каждый  житель Земли (категория В) на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр. Полученная доза складывается из природных и искусственных источников ионизирующего излучения.

      Защита  от ионизирующих излучений

      Ниже  предлагаются рекомендации общего характера  по защите от ионизирующего излучения  разного типа.

      От  альфа-лучей можно защититься путём:

  • увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
  • использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  • исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

      В качестве защиты от бета-излучения  используют:

  • ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  • методы и способы, исключающие попадание источников бета-излучения внутрь организма.

      Защиту  от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

  • увеличение расстояния до источника излучения;
  • сокращение времени пребывания в опасной зоне;
  • экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
  • использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
  • использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
  • дозиметрический контроль внешней среды и продуктов питания.

      При использовании различного рода защитных сооружений следует учитывать, что  мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл). Некоторые величины Косл приведены в табл.5.

      Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации.

  • УКРЫТЬСЯ В ЖИЛЫХ ДОМАХ. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз табл. 5.
  • ПРИНЯТЬ МЕРЫ ЗАЩИТЫ ОТ ПРОНИКНОВЕНИЯ В КВАРТИРУ (ДОМ) РАДИАКТИВНЫХ ВЕЩЕСТВ С ВОЗДУХОМ: 
    закрыть форточки, уплотнить рамы и дверные проёмы.
  • СДЕЛАТЬ ЗАПАС ПИТЬЕВОЙ ВОДЫ: набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны.
  • ПРОВЕСТИ ЭКСТРЕННУЮ ЙОДНУЮ ПРОФИЛАКТИКУ (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается 100%-ная степень защиты от накопления радиоактивного йода в щитовидной железе. Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток:

      - детям до 2 лет - по 1-2 капли 5%-ной  настойки на 100 мл молока или  питательной смеси;

      - детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды.

      Наносить  на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.  
 
 
 
 

Информация о работе Закон Вебера Фахнера