Автор работы: Пользователь скрыл имя, 04 Января 2011 в 16:20, реферат
Технология конструкционных материалов представляет собой комплексную дисциплину, которая содержит основные сведения о способах получения металлических и неметаллических конструкционных материалов, их свойствах и методах обработки при получении заготовок, готовых деталей или изделий различного назначения. Успешное изучение ряда специальных дисциплин, а также дальнейшая деятельность студентов многих специальностей может стать успешной лишь при усвоении этих вопросов.
Серые чугуны, как и углеродистые стали, также содержат постоянные примеси, но в больших количествах (3—3,5 % С; 1,5—3 % Si, около 0,5 % Мп, до 0,12 % S и 0,3—0,8 % Р).
Графит в сером чугуне выделяется в виде пластинок, хлопьев или шариков; основа чугуна может быть ферритной, феррито-перлитной или перлитной (рис. 11).
1. Чугуны с пластинчатым графитом называют обычными серыми (рис. 11, а). Наличие пластинчатых включений графита, представляющих по существу пустоты с острыми надрезами, обусловливает низкие механические свойства серого чугуна. Предел его прочности при растяжении 100—450 МПа, относительное удлинение δ = 0,2…0,8 %, ударная вязкость не превышает 0,1 МДж/м2.
Механические свойства чугунов обусловливаются их структурой, определяемой не только химическим составом, но и условиями затвердения. Поэтому стандарты регламентируют не химический состав чугунов, а их свойства. Эти свойства и указываются в марках. Например, марка серого чугуна СЧ15 обозначает обычный серый чугун (СЧ) с пределом прочности при растяжении 150 МПа.
2. Ковкие чугуны (рис. 11, б) получают из белых. Для этого отливки из белого чугуна подвергают длительному отжигу, в результате чего цементит распадается с выделением графита в виде хлопьев. Такие включения в меньшей мере разобщают основу, поэтому ковкий чугун прочнее и пластичнее обычного серого, имеет большую ударную вязкость. Предел прочности его составляет 300—630 МПа, относительное удлинение δ = 2…12 %. Это позволяет применять ковкий чугун для изготовления деталей, работающих при умеренных ударных нагрузках. Обозначают ковкие чугуны буквами КЧ, первое число в марке указывает предел прочности при растяжении, второе — относительное удлинение, например КЧ 33—8.
3. Высокопрочные чугуны (рис.11, в) получают при модифицировании серого чугуна магнием или церием. При этом образуется графит шаровидной формы, исключающий острые надрезы в металлической основе. Поэтому механические свойства этого чугуна значительно повышаются: предел прочности при растяжении достигает 1200 МПа, относительное удлинение составляет 2…17%, а ударная вязкость — 0,2— 0,6 МДж/м2. Такой чугун в ряде случаев является полноценным заменителем стали. Обозначают его буквами ВЧ и числами, имеющими то же значение, что и в марке ковкого чугуна, например ВЧ 80—3.
Медь и ее сплавы
Медь — металл красного цвета с плотностью 8,9 г/см3 и температурой плавления 1083 °С. В отожженном состоянии медь обладает прочностью σв ≈ 250 МПа, твердостью НВ ≈ 45, большой пластичностью (δ = 50 %), тепло- и электропроводимостью, хорошей коррозионной стойкостью.
Сплавы на основе меди подразделяют на латуни и бронзы.
1. Латунями называют сплавы меди с цинком. Цинк в количестве до 39 % образует с медью твердый раствор а — так называемую α-латунь. При большем содержании цинка в сплавах образуется вторая фаза — β — твердый раствор. Двухфазные латуни называют α + β латунями. Наличие в структуре более прочной и твердой β-фазы способствует повышению прочности латуни, однако резко снижает ее пластичность. Поэтому α-латуни используют для деталей, обрабатываемых давлением, прокаткой, штамповкой, а α + β-латуни — деталей, получаемых отливкой и обработкой резанием.
Для
повышения прочности и
Латуни обозначают буквой Л и числом, указывающим содержание меди в сплаве (остальное — Zn). Например, латунь Л85 состоит из 85 % Си и 15 % Zn. В марке сложных латуней легирующие элементы обозначают начальными буквами их названий (А — алюминий, К — кремний, О — олово и т. д.), а цифрами — их содержание. Например, марка ЛАН 59-1-1 обозначает латунь, содержащую 59 % Си, 1 % Al, 1% Ni, остальное — Zn.
2. Бронзами называют сплавы меди с оловом, алюминием, бериллием и некоторыми другими элементами.
Бронзы, как и латуни, бывают простыми (БрА5, БрБ2) и сложными. В сложных бронзах, кроме основных, есть легирующие элементы (Ni, Fe, Mn и др.). Например, бронза марки БрА11Ж6Н6 содержит соответственно 11 % А1, 6 % Fe, 6 % Ni, остальное —Си.
Бронзы бывают однофазными, состоящими из одной фазы — твердого раствора, и двухфазными, в которых второй фазой обычно является химическое (металлическое) соединение.
Однофазные бронзы хорошо обрабатываются давлением, их поставляют в виде листов, прутков, труб; двухфазные обладают хорошими литейными свойствами.
Алюминий и его сплавы
Алюминий — серебристо-белый металл с плотностью 2,7 г/см3 и температурой плавления 660 °С. В отожженном состоянии он обладает прочностью σв = 80 … 100 МПа, большой пластичностью (δ = 45 %), невысокой твердостью (НВ ≈ 25—30), хорошей тепло- и электропроводностью и коррозионной стойкостью.
Для легирования алюминия применяют Си, Si, Mg, Mn, Zn, реже — Ni, Ti, Cr и некоторые другие элементы. Большинство из них в определенных количествах растворяются в алюминии, а затем образуют хрупкую эвтектику. Поэтому алюминиевые сплавы подразделяются на деформируемые (обрабатываемые давлением) и литейные.
1. Деформируемые алюминиевые сплавы, в свою очередь, подразделяют на неупрочняемые и упрочняемые термообработкой.
К неупрочняемым термообработкой сплавам относятся сплавы АМц, содержащие до 1,5 % Mn, и АМг, содержащие 1…7 % Mg, до 0,8 % Mn, и добавки Ti, V, Be. Эти сплавы обладают высокой пластичностью, хорошо свариваются. Из них изготовляют сварные изделия (трубы, баки и т. п).
Алюминиевые сплавы, упрочняемые термообработкой, получили название дуралюминов. Они содержат 3—5 % Cu и примерно по 1 % Mg, Mn, Fe, Si. Их обозначают буквой Д и цифрой — условным номером сплава (Д1, Д16 и др.). После термообработки эти сплавы обладают прочностью 450—650 МПа, что позволяет применять их для изготовления деталей, работающих при значительных нагрузках.
2. Литейные алюминиевые сплавы содержат повышенное количество Mg, Cu, Si или Zn. Наиболее широкое применение из них получили силумины — сплавы алюминия с 8…14 % кремния. В качестве литейных используют также алюминиево-медные (4—11 % Си), алюминиево-магниевые (8…11 % Mg), алюминиево-цинковые (10…14 % Zn) сплавы. Их обозначают буквами АЛ и условным номером, например АЛ2, АЛ4.
Магний и его сплавы
Магний — серебристо-белый металл с температурой плавления 651 °С и наименьшей среди конструкционных металлов плотностью — 1,74 г/см3.
В связи с небольшой прочностью σв = 100 МПа, пластичностью (δ = 8 %) и малой коррозионной стойкостью технически чистый магний в качестве конструкционного материала не применяется. В технике используют сплавы магния с Al, Mn, Zn, Zr и другими элементами.
1. Деформируемые магниевые сплавы применяют для изготовления поковок и штамповок. К этой группе сплавов, обозначаемых буквами МА и условным номером (MA1, MA8), относятся сплавы магния, содержащие по 9 % А1, 2,5 % Мn, 1,5 % Zn. Они обладают прочностью в пределах 200-350 МПа.
2. Литейные магниевые сплавы содержат до 10 % А1, 6 % Zn, (МЛ4, МЛ6 и др.). Они обладают хорошей жидкотекучестью и применяются для получения литых кронштейнов, корпусов приборов и других деталей, которые должны обладать небольшой массой. Предел прочности этих сплавов — 200—250 МПа.
Титан и его сплавы
Титан — стального цвета металл с температурой плавления 1665 °С и плотностью 4,5 г/см3., обладает прочностью σв = 250 МПа, относительным удлинением δ = 20…30 %, твердостью НВ = 100 … 140, высокой коррозионной стойкостью.
Улучшение механических свойств титана достигается легированием некоторыми элементами: Al, Cr, Mo, Nb, Sn и др. Легирование и термическая обработка позволяют получать сплавы на основе титана с пределом прочности при растяжении до 1300…1600 МПа.
Благодаря малой плотности, высокой прочности и коррозионной стойкости титан и его сплавы находят широкое применение в авиационной технике, судостроении, химической и пищевой промышленности.
ТЕРМИЧЕСКАЯ ОБРАБОТКА
Сущность термической обработки
Свойства металлов и сплавов определяются их внутренним строением — структурой. Одним из эффективных способов, позволяющих изменять в значительной степени структуру металлов и сплавов, является термическая обработка.
Термическая
обработка заключается в
Термической обработке подвергают как черные, так и цветные металлы и их сплавы. Возможность применения термообработки и ее эффективность определяются характером превращений в металле в твердом состоянии.
Виды термической обработки
Различают следующие основные виды термической обработки: отжиг I рода, отжиг II рода, закалку и отпуск.
1. Отжиг I рода не обусловлен фазовыми превращениями, поэтому может быть применен для любых металлов и сплавов. Скорость нагрева и охлаждения для этого вида отжига не имеет принципиального значения.
Рис. 12. Температуры нагрева стали при различных видах термообработки.
1 — отжиг для уменьшения напряжения, 2 — рекристаллизационныи отжиг, 3 — неполный отжиг, 4 — полный отжиг, 5 — диффузионный отжиг, 6 — нормализация
Различают следующие разновидности отжига I рода
Диффузионный отжиг устраняет химическую неоднородность в слитках и отливках. Для ускорения диффузионных процессов этот отжиг производится при температуре 0,8—0,9 Тпл сплава
Рекристаллизационный отжиг устраняет наклеп — упрочнение и увеличение хрупкости металла, которые возникают при холодной обработке давлением. Эту операцию производят при температуре 0,2…0,6 Тпл металла
Отжиг для уменьшения остаточных напряжений, возникающих в изделиях при обработке давлением или резанием, в сварных конструкциях, отливках и т. д., осуществляется при температуре несколько ниже температуры рекристаллизации данного металла и применяется с целью предотвращения коробления и стабилизации размеров изделия, снижения склонности его к хрупкому разрушению.
2. Отжиг II рода применяют для сплавов, претерпевающих при нагреве и охлаждении фазовые превращения. Этот вид отжига в основном применяют для стальных изделий.
Отжиг стали подразделяют на полный и неполный; разновидностью отжига стали является нормализация (рис. 12).
3. Закалка, как и отжиг II рода, применяется для сплавов, претерпевающих при нагреве и охлаждении фазовые превращения. Принципиальным отличием между ними является большая скорость охлаждения при закалке, достаточная для предотвращения обратных фазовых превращений в сплаве при охлаждении. Закалке в основном подвергают сплавы железа — стали, чугуны Наряду с ними закаливают и сплавы на основе цветных металлов алюминия, меди, титана, никеля и др.
Углеродистую сталь нагревают для закалки доэвтектоидную до температуры на 30—50 °С выше точки Ас, (линии GS), а заэвтектоидную — на 30—50 0С выше точки Aс3 (линии SK).
Для
обеспечения необходимой
В результате закалки в стали образуется так называемая мартенситная структура, обладающая наибольшей прочностью и твердостью (НВ ≈ 600), но низкой ударной вязкостью.
4. Отпуску подвергают закаленную сталь с целью повышения ее ударной вязкости и пластичности, уменьшения твердости и внутренних напряжений. Для отпуска сталь нагревают до температуры ниже точки Ас1 (линии PSK) и затем охлаждают обычно на воздухе.
Различают три вида отпуска:
Низкий отпуск (150—250 °С) применяют для изделий, которые должны обладать высокой твердостью (НВ ≈ 600), например режущие инструменты, не подвергающиеся ударным нагрузкам (напильники, плашки, метчики и т. д). Этот отпуск предназначен главным образом для уменьшения внутренних напряжений в изделиях.
Среднему отпуску (350—400 °С) подвергают изделия, которые должны обладать высокой упругостью и прочностью при достаточной вязкости, например пружины, рессоры. Твердость при этом снижается до НВ ≈ 450