Сравнение технологий ЖК и плазмы

Автор работы: Пользователь скрыл имя, 03 Октября 2011 в 20:20, контрольная работа

Описание работы

Плоские дисплеи в будущем заменят привычные электронно-лучевые трубки телевизоров. HDTV, цифровая конвергенция и DVD высокого разрешения знаменуют смерть ЭЛТ-телевизоров. Конечно, этого ещё не произошло, но ждать осталось недолго. Пару-тройку десятилетий назад таким же был переход с чёрно-белых телевизоров на цветные. Но в нашу эпоху, с учётом быстрого внедрения новинок в жизнь и их удешевлением, уже через несколько лет телевизор с лучевой трубкой будет смотреться анахронизмом. Но при покупке плоскопанельного телевизора возникает проблема: необходимо выбрать между двумя технологиями, существенно отличающимися друг от друга: между плазмой и ЖК.

Файлы: 1 файл

сравнение технологий ЖК и плазмы.doc

— 360.50 Кб (Скачать файл)

     Также следует заметить, что плазменные дисплеи могут достигать больших размеров (с диагональю от 32" до 50") с минимальной толщиной. Это очень важное преимущество по сравнению с ЭЛТ-дисплеями, когда большой диагонали сопутствуют громоздкие габариты. Сейчас, кстати, есть приличные модели ЭЛТ-телевизоров с относительно небольшой толщиной.  

     Недостатки

     У плазменных панелей есть характерное  свойство: большой размер пикселей. Достичь размера пикселя меньше 0,5 или 0,6 мм практически невозможно. Поэтому плазменные телевизоры с  диагональю меньше 32" (82 см) попросту не существуют. Для обеспечения достойного разрешения у производителей плазменных панелей нет другого выбора, кроме как повышать размер дисплея с 32 до 50 дюймов (с 82 до 127 см).

     Что касается качества картинки, то и здесь  не всё гладко. Проблемы связаны с природой пикселей. Для излучения света пиксель плазмы требует электрического разряда. Он может либо гореть, либо не гореть, но промежуточного состояния нет. Потому для управления яркостью свечения производители используют метод импульсно-кодовой модуляции.  

     

     Метод такой. Чтобы пиксель горел ярко, его нужно часто зажигать. Для  получения более тёмного оттенка  зажигать пиксель можно реже. Глаз человека не заметит отдельные вспышки и усреднит значение яркости. Этот метод хорошо работает, но и не свободен от недостатков. Если средние и яркие оттенки отображаются вполне прилично, то тёмные оттенки страдают от недостатка света - их очень трудно отличить друг от друга.

     Если  получающаяся картинка с расстояния выглядит цельной, то на близком расстоянии вы вряд ли сможете ей наслаждаться. Установлено, что человеческий глаз не замечает мерцания с частотой выше 85 Гц, но это не всегда так.

     По  своей природе зрительная система состоит из собственно датчиков и "программы обработки" в мозге. Датчики относятся к интеграционному типу (с химической природой: разложение веществ под действием светового излучения, преобразование в электрические потенциалы и передача сигналов в мозг). Интегрирование параметров яркости и цвета происходит по времени и по площади. Если площадь объектов мала, то мерцание объектов мало заметно. Но если в поле зрения попадут объекты большей площади с модуляцией по яркости 85 Гц, то они будут обнаружены глазом! То есть датчиками, а не мозгом! Особую роль в деле обнаружения высокочастотных составляющих играет периферическое зрение. Именно оно и позволяет отлавливать компоненты 85-90 Гц.

     Утомление глаз происходит вследствие того, что  создаются некомфортные условия для спорадического сканирования поля зрения. Если обнаруживаются "опасные" объекты (с модуляцией, например, 85 Гц) то глазные мышцы стараются просканировать именно периферийную часть, которая имеет наибольшую чувствительность для локализации таких объектов. В обычной ситуации мышцы не рассчитаны на такие предельные нагрузки. Отсюда и накапливается усталость глаз. Дополнительная усталость возникает и в мозге. Принятые стимулы от "вибрирующих" пространственных объектов относятся к категории опасных, на фильтрацию событий тратятся дополнительные "мощности".

     Чтобы избежать появления в изображении  на плазменном экране артефактов и  мерцания, связанных с ШИМ модуляцией, применяются изощрённые методы нелинейной импульсной модуляции с равномерным "размазываем" стимулов яркости по всему полю экрана.

     К сожалению, полностью избавиться от мерцания на плазменных панелях не удаётся, особенно во время просмотра  с близкого расстояния. Так что  картинка на плазменном телевизоре больше, но и сидеть от экрана придётся дальше. Следовательно, большего погружения в фильм не получится.

     Кроме того, у пикселей плазмы выгорает люминофор. На ЭЛТ-мониторе при долговременном выводе одной и той же картинки, она станет заметна на экране. После  этого даже при смене картинки предыдущая будет видна, как будто она выгравирована на экране. Этот феномен связан с преждевременным старением люминофоров. Если они постоянно работают, то люминофоры стареют и становятся менее эффективными. Так как плазменные дисплеи тоже используют люминофоры, они выгорают точно так же, как и трубки телевизоров.

     Впрочем, при стандартных условиях эксплуатации телевизора проблем возникнуть не должно, так как картинка на экране постоянно  меняется, и пиксели стареют, более-менее, одинаково. Но для некоторых бизнес-применений (экран в магазине) могут возникнуть проблемы. Например, если на экране отображается один и тот же канал в режиме 24/7, то на нём могут выгореть пиксели логотипа (МТВ, НТВ и т.д.) - ведь они отображаются почти в каждом кадре. То же самое относится и к рекламным экранам, когда на них долго демонстрируется какая-либо картинка.

     Именно  этот феномен и ограничивает срок службы плазменных дисплеев. Несмотря на слухи, плазменные панели не "текут" и их не надо подзаряжать. Но люминофоры стареют, и с этим, к сожалению, ничего не поделаешь. Что ещё хуже, не все сцинтилляторы стареют одинаково: синий канал всегда выгорает раньше (хотя, надо сказать, ситуация сегодня намного улучшилась по сравнению с первыми плазменными панелями).

     Наконец, отметим ценовой фактор: плазменные дисплеи довольно дороги. И здесь  следует учитывать не только себестоимость самих панелей, которые трудно производить, но и то, что электроника панелей требует высоковольтных полупроводниковых схем, которые работают на пределах возможностей материалов. Контрольные цепи электродов должны выдерживать несколько сотен вольт на высоких частотах. Одним из последствий высоких напряжений является энергопотребление плазменных дисплеев, которое всегда выше, чем у ЖК-мониторов. Например, 42" (107 см) плазменный дисплей потребляет 250 Вт или даже выше, а ЖК-панель с той же диагональю будет потреблять всего 150 Вт.  

     Применения плазменных панелей

     Плазменные  панели чаще всего встречаются в  высококачественных видеосистемах  большого формата. Их большой размер и хорошее качество картинки прекрасно  подходят для просмотра DVD или телевидения высокого разрешения. Плазменные панели традиционно позиционируются на high-end сектор рынка, где проблемы высокой цены, старения люминофора и высокого энергопотребления вторичны по сравнению с качеством. Хотя, надо сказать, последние поколения ЖК-телевизоров начали вытеснять "плазму" и с этого рынка.

     Если  заглянуть дальше в будущее, то вполне очевидно, что ЖК будут "отъедать" рынок плазменных панелей, поскольку  их диагональ продолжает увеличиваться. И причина проста: по мере наработки технологии производить ЖК-панели становится проще, да и стоят они дешевле.

     Если  ситуацию не изменят какие-либо инновации, плазменные панели останутся прерогативой специфических сфер использования, когда нужно выводить очень большую  картинку для просмотра с большого расстояния, что сильно сужает область использования.

     Проблема  мерцания плазменных панелей также  объясняет, почему эта технология мало подходит для компьютерных мониторов.  

     Технология  ЖК  

     Перспективная технология

     Понятие "жидкие кристаллы" относится не прошлому, а к позапрошлому веку - оно появилось ещё в 1889 году! И причём не в электронике, а в ботанике. В электронику жидкие кристаллы пришли только в 1963 году, когда ими заинтересовалась RCA и начала работу с DSM-эффектом динамического рассеяния в ЖК. В 1969 году Джеймс Фергюссон (James Fergason) обнаружил эффект скручивания жидких кристаллов-нематиков (twisted nematic effect, TN effect). Фергюссон работал в Кентском университете и патент на твист-нематические кристаллы он получил в 1971 году совместно со специалистами известной фирмы Hoffman La Roche, мирового производителя 90% всех ЖК-материалов. Это открытие было фундаментальным, поскольку многие ЖК-дисплеи используют принцип вращения кристалла в плоскости поляризации (Надо отметить, есть и другие принципы и эффекты. В частности, Kent Display выпускает ЖК-дисплеи на холестерических ЖК.) В 1973 году Джордж Грей (George Gray) изобрёл бифениловый (biphenyl) жидкий кристалл, который стабильно работал в условиях нормального давления и температуры. Ещё в 1986 году NEC выпустила первый портативный компьютер с ЖК-дисплеем (LCD, Liquid Crystal Display). В 1995 году диагональ ЖК-панелей превысила 28" (71 см).

     ЖК-мониторы приобрели свою зрелость благодаря  портативным бытовым устройствам  и телевизорам. Первый цветной телевизор ЖК в часах был сделан фирмой Casio ещё в 1981 году! Потом, в течение 12-13 лет все старания фирм в данной сфере крутились в сфере портативных телевизоров. А уже в начале 90-х их стали потихоньку продвигать в компьютеры. Определённые качества могут рано или поздно привести к тому, что ЖК-дисплеи займут лидирующее положение и в этой области.  

     Принцип работы ЖК.

     Основное  различие между технологиями плазмы и ЖК состоит в том, что пиксели  ЖК-панели, сами по себе, свет не излучают. И все качества и недостатки этой технологии автоматически выходят из этого ключевого принципа.

     

     Как и в других технологиях, пиксель  ЖК-панели состоит из трёх суб-пикселей основных цветов. Но принцип работы в данном случае довольно интересен: кристалл не излучает свет, но работает в качестве переключателя, именно поэтому ЖК-панелям всегда нужна подсветка (либо отражённый свет, который тоже может использоваться). Свет, излучаемый подсветкой, проходит через жидкий кристалл, а затем и окрашивается цветовым фильтром (если быть точным, то фильтр просто не пропускает ненужные цвета спектра, поглощая до 75% света). Каждый суб-пиксель имеет одинаковое строение и отличается только цветовым фильтром. Жидким кристаллом каждого суб-пикселя можно управлять как клапаном. В зависимости от угла поворота, через кристалл проходит больше или меньше света, в результате чего каждый пиксель даёт то или иное количество красного, зелёного или синего цвета.  
 
 
 
 
 
 
 
 
 
 
 

     В деталях

     Давайте рассмотрим, как работает этот световой клапан.

     

     Подсветка излучает обычный неполяризованный белый свет. Как известно, свет представляет собой электромагнитную волну, где векторы электрического и магнитного полей направлены перпендикулярно к направлению распространения волны. Лампа излучает неполяризованный свет, поэтому вектор электрического поля может быть направлен во все стороны перпендикулярно направлению распространения волны. После того, как свет пройдёт через поляризатор, вектор его электрического поля будет иметь преимущественное направление (в нашем примере вертикальное). Если свет затем попадёт на второй поляризатор, где ось поляризации перпендикулярна первому (в нашем примере она горизонтальная), то мы ничего не увидим - свет попросту не пройдёт. Но если мы разместим между двумя поляризаторами жидкий кристалл, то он сможет повернуть ось поляризации света таким образом, чтобы она совпадала с осью второго поляризатора. Тогда свет сможет пройти. Это свойство жидких кристаллов и стало причиной их успеха в технологиях дисплеев. Что интересно, сам по себе ЖК-материал не имеет таких свойств. Его "насильно" заставили это сделать. По природе ЖК хаотичен и "ленив". И мало на что способен. Но вот под действием чужой воли, то есть ориентации, его можно заставить поработать. Огромная роль в придании поляризационной селективности играет ориентирующее покрытие, которое наносится на поверхности обеих подложек. Именно качество ориентирующего покрытия и определяют селективность процесса поляризации. Благодаря ориентирующему слою происходит выстраивание и закручивание молекул ЖК.

     

     Если  подать на кристалл электрический ток, то он будет поворачиваться в зависимости  от разницы потенциалов - подобно  стрелке компаса, ориентирующейся  по магнитному полю Земли. С помощью  электрического поля можно запретить поворот оси поляризации, после чего через горизонтальный поляризатор свет уже не будет проходить, так как он будет оставаться поляризованным вертикально.

     Изменяя напряжение на краях жидкого кристалла, мы получаем, своего рода, переключатель с промежуточными положениями, которые более или менее точно позволяют задать оттенки цвета.

     

 

     Адресуем  ЖК-матрицу

     Адресация ЖК-дисплеев с пассивной матрицей реализуется примерно так же, как и у плазменных панелей. Передний электрод, общий для всего столбца, проводит ток. Задний электрод, общий для всего ряда, служит "землёй".

     Недостатки  у старых, пассивных матриц есть и они известны: панели очень медлительны, а картинка не резкая. И причин тому две. Первая заключается в том, что после того, как мы адресуем пиксель и поворачиваем кристалл, последний будет медленно возвращаться в своё первоначальное состояние, размывая картинку. Вторая причина кроется в ёмкостной связи между линиями управления. Эта связь приводит к неточному распространению напряжения и слегка "портит" соседние пиксели.

     Чтобы устранить описанные недостатки, производители перешли на технологии активных матриц. Хотя, надо сказать, пассивные матрицы тоже со временем совершенствовались и сегодня применяются во многих устройствах, например, в сотовых телефонах.

     

     Здесь к каждой ячейке пикселя добавляется транзистор, работающий как переключатель. Если он открыт (включён), то в запоминающий конденсатор могут записываться данные. Если транзистор закрыт (выключен), то данные остаются в конденсаторе, работающем как аналоговая память. Технология имеет множество преимуществ. Когда транзистор закрыт, данные продолжают находиться в конденсаторе, поэтому подводка напряжения к жидкому кристаллу не прекратится, в то время как управляющие линии будут адресовать другой пиксель. То есть пиксель не будет возвращаться в исходное состояние, как происходило в случае пассивной матрицы. Кроме того, время записи в конденсатор намного меньше, чем время поворота кристалла, то есть мы можем быстрее опрашивать пиксели панели и передавать на них данные.

Информация о работе Сравнение технологий ЖК и плазмы