Автор работы: Пользователь скрыл имя, 24 Января 2011 в 08:57, реферат
работа содержит ответы на вопросы по предмету "Технология резания".
Объемная плотность транзисторов в разрабатываемых интегральных наносхемах предельно высока. В таких условиях вопросы энергетики перспективного нанокомпьютера оказываются чрезвычайно важными. Существует фундаментальное ограничение плотности упаковки логических элементов, связанное уже не с атомной структурой вещества, а с термодинамикой вычислительного процесса как такового. Его суть выражается принципом Ландауэра, согласно которому потеря одного бита информации ведет к выделению тепловой энергии, равной kBT ln2, где kB - постоянная Больцмана, T - температура процессора. В настоящее время просматриваются различные пути решения проблемы перегрева процессора. Например, - реализация обратимых вычислений. Это возможно при организации вычислительного процесса на основе принципов квантовой информатики.
Ближе к воплощению другой путь, позволяющий ориентироваться на уже существующие принципы организации вычислительного процесса. Согласно принципу Ландауэра, при работе в рамках классической логики любое переключение транзистора приводит к выделению тепла, пропорционального температуре транзистора. Если понизить температуру транзистора, можно будет понизить напряжение питания и, следовательно, уменьшить тепловыделение (снижать напряжение питания без снижения температуры процессора нельзя, так как это приведет к сбоям в работе). Как сильно требуется охладить процессор, чтобы добиться существенного выигрыша в тепловыделении? Из основного соотношения Ландауэра видно, что охлаждение процессора даже до температуры жидкого азота (77,4° K) не дает больших преимуществ, так как снижает тепловыделение по сравнению с режимом работы при комнатной температуре всего лишь в четыре раза. То есть если процессор без охлаждения рассеивал, допустим, мощность 60 Вт, то при температуре жидкого азота он будет рассеивать мощность 15 Вт. Охлаждение до температуры жидкого гелия (4,2° К) понижает температуру вычислительного процесса примерно в сто раз, что дает для рассматриваемого случая мощность рассеяния 600 мВт. Производительность нанокомпьютера, охлаждаемого жидким гелием, можно оценить следующим образом. Теплота испарения жидкого гелия примерно равна 3*103 Дж/л. Таким образом, одного кубического миллиметра жидкого гелия, расходуемого за 1 секунду при температуре 4,2 °K, будет достаточно для отвода ландауэровского тепла от машины с вычислительной производительностью примерно 5*1019 бит/с. Если предположить, что одновременно будет переключаться 100 млн. одноэлектронных транзисторов, то рабочая частота нанокомпьютера может быть выше 100 ГГц, а тепловыделение - лишь 3 мВт. Создание криогенного наночипа - дело вполне реальное, так как в системе замкнутого оборота криогенного кулера должно быть всего-навсего несколько кубических миллиметров жидкого гелия.
При широком коммерческом производстве гелиевые кулеры для PC будут размером не более воздушных кулеров для современных процессоров. При этом они должны будут отводить тепловую мощность всего несколько милливатт. Для суперкомпьютерных центров будут строиться гораздо более мощные нанокомпьютеры со стационарными криогенными установками. Но и вычислительная мощность у них будет в сотни тысяч раз больше, чем у криогенных PC.
С другой стороны, 3° К - это температура космоса. Почему бы космос с его неограниченными холодильными ресурсами не подключить к решению проблемы роста вычислительных ресурсов на Земле? Суперкомпьютерные центры, расположенные на геостационарных орбитах с дешевым космическим холодом, оснащенные мощными информационными каналами связи с Землей, - новое направление развития IT-бизнеса в будущем.
В принципе, температуру рабочей среды компьютера можно понижать еще на несколько порядков по сравнению с температурой жидкого гелия, однако при этом будут быстро расти и затраты на охлаждение. Ведь холодильный агрегат при работе тоже повышает энтропию. К тому же теплоемкость реальных хладагентов в условиях сверхнизких температур весьма мала.
Известны и другие
физические механизмы, используя которые,
можно оптимизировать термодинамику
классического компьютера. Дело в
том, что принцип Ландауэра
Такие компьютеры уже существуют. Это - оптические компьютеры. В них низкоэнтропийные пучки света проходят через оптическую систему практически без тепловых потерь. Ландауэровское тепло выделяется лишь в детекторах излучения при считывании результата. В этом и состоит главный "секрет" современного чуда - оптоволоконных систем связи. На данный момент в оптических компьютерах реализуются "самые холодные" вычисления. Что касается электронных компьютеров, то для них тоже можно реализовать вычислительный процесс в термодинамически неравновесных условиях, так как масса электрона во много раз меньше массы атомов. Например, возможно создание вычислительных наноструктур с пучками переохлажденных электронов, распространяющихся в решетке из тяжелых атомов. Транзисторы, в которых электроны пролетают через рабочий канал, практически не испытывая тепловых столкновений с атомами, уже созданы - это баллистические транзисторы. Следующий шаг - создание баллистических транзисторов с холодными электронами.
Каким будет баланс тепловыделения W и вычислительной производительности P, если, наоборот, пойти по энергозатратному пути, увеличивая рабочую температуру T вычислительной среды? Согласно принципу Ландауэра, тепловыделение компьютера, достигшего предельных физических характеристик, пропорционально произведению: W ~ P*T. В то же время для компьютера, находящегося, например, в космосе, единственный способ отвода тепла - тепловое излучение. На самом деле, излучение фотонов в пространство - это и есть реальный физический механизм "сброса" энтропии, образующейся в процессе необратимых вычислений. Согласно закону Стефана-Больцмана, мощность теплового излучения абсолютно черного тела пропорциональна T4. Условие теплового баланса дает P~ T3, - допустимая вычислительная мощность очень быстро растет с ростом температуры вычислительной среды. Вопрос лишь в том, до какой температуры можно разогревать процессор без угрозы его теплового разрушения.
Разработки
Про "это"
Борьба с накладываемыми на вычислительный процесс фундаментальными ограничениями, - дело чрезвычайно сложное и дорогостоящее, доступное лишь высокоразвитым странам в рамках крупных национальных программ, аналогичных строительству гигантских ускорителей элементарных частиц или полетам к другим планетам. Столь же сложными оказываются и проблемы производства компьютеров на основе нанотехнологий. Для целей полупроводниковой литографии используются даже ускорители элементарных частиц в качестве источников коротковолнового излучения. Однако литография, пусть даже в рентгеновском или электронно-лучевом исполнении, оказывается малопроизводительной из-за большого брака уже при разрешении 10-20 нм. Поиски альтернативных способов изготовления нанотранзисторов и сборки из них компьютеров составляют еще одно важное направление современных исследований в области нанотехнологий. Так, с разработкой сканирующего туннельного микроскопа оказалось возможным манипулировать отдельными атомами и молекулами - захватывать их в одном месте и укладывать в строго определенном порядке в другом. Однако производительность таких наноманипуляторов оказалась слишком низкой, чтобы на нее можно было реально рассчитывать при сборке больших интегральных наночипов.
В настоящее время весьма популярны идеи химического синтеза вычислительных наноструктур, а также их самосборки. Такие технологии привлекательны тем, что позволяют достичь высокой степени параллелизма, автоматического контроля качества и высокой производительности в таких малых пространственных масштабах, где использование технологий макромира невозможно или неэффективно. Ведутся также исследования в области самовоспроизводства наноструктур. Все это должно осуществляться непосредственно под управлением механизмов нанометрового масштаба в среде, содержащей строительные блоки нанометрового и субнанометрового размера. Но возможна ли самосборка хотя бы в принципе?
Окружающая нас действительность наглядно показывает, что в природе самосборка не только возможна, но и успешно осуществляется в виде более сложного процесса - самовоспроизводства. Достаточно вспомнить о механизме репликации молекул ДНК. В 1952 году к теоретическому описанию процесса самовоспроизводства приступил один из величайших кибернетиков ХХ века Дж. фон Нейман (1903–57). Результаты его работы были опубликованы лишь в 1966 году, уже после смерти автора. Нейман показал, что существует некоторая пороговая сложность автомата, начиная с которой самовоспроизводство возможно. Им также была высказана идея, что, начиная с некоторого более высокого уровня сложности такой процесс возможен с нарастанием сложности создаваемых систем. Нейман построил конкретную математическую модель самовоспроизводящейся структуры на основе клеточного автомата. В основе модели Неймана лежало представление о двумерной регулярной среде элементарных ячеек, обладающих конечным числом состояний и определенной функцией переходов. Современные технологии производства наноустройств еще далеки от практической реализации самовоспроизводства в том виде, как его описал Нейман, однако идея синтеза вычислительной среды в виде двумерного массива элементарных транзисторных ячеек начинает сегодня отчетливо прослеживаться в экспериментальных работах, ведущихся в некоторых крупных исследовательских центрах мира (IBM, Bell Labs и др.).
Успеху данного
направления во многом способствует стремление
нанокластеров некоторых химических элементов
к самоорганизации с образованием регулярных
структур. Специалисты из Communications Research
Laboratory (Япония), ведущие исследования в
этом направлении, прямо заявляют, что
целью их разработок является создание
клеточного автомата - большой матрицы
простых идентичных компонентов нанометрового
масштаба, или клеток. Клетки сообщаются
с помощью сигналов, передаваемых по цепочке
от клетки к клетке. Изготовить такую конструкцию
в Японии надеются путем химического синтеза.
На завершение работы с использованием
отдельных молекул в качестве рабочего
элемента японские исследователи отпускают
себе двадцать лет.
Схемотехника и архитектура
Примеры первых наиболее успешных экспериментов по массовому производству компонентов электронных схем с применением нанотруб, фуллеренов и других "магических" кластеров показали, что основу вычислительной среды будущего нанокомпьютера будет составлять регулярная, для начала - двухмерная, матрица, образованная нанотранзисторами размером 2-10 нм. При этом молекулярно-кластерными методами можно будет создавать наиболее мелкие элементы схем, требующие высокого пространственного разрешения порядка 0,5-1 нм, недоступного для литографии. В первую очередь - это область регулируемого проводящего канала транзистора. Цепи же переноса сигналов между транзисторными ячейками можно будет создавать литографическими методами с шириной проводящей дорожки 5-20 нм. Такой гибридный способ производства транзисторов уже сейчас позволяет исключить из технологической цепочки сложные операции легирования полупроводника. Плотность упаковки электронных компонентов на чипе будет определяться значением 1000-10000 транзисторов на квадратный микрон.
В силу особых сложностей переноса предельно слабых сигналов на большие расстояния, схемотехника нанокомпьютера будет строиться по блочно-модульному принципу. Базовый блок будет представлять собой макроячейку с элементами памяти на несколько бит, программируемой логической матрицей на входе и интерфейсными элементами входа-выхода. Цепи переноса сигнала между макроячейками будут организованы с использованием принципов приборов с зарядовой связью (charge coupled devices, CCD), а также с использованием спинтронных каналов переноса информации в магнитных полупроводниках. Использование механизма кулоновской блокады позволит передавать сигналы предельно малыми пакетами, вплоть до одноэлектронных. Макроячейки можно собирать далее в матрицы и суперматрицы, создавая таким образом универсальные программируемые вычислительные среды типа современных устройств PLD (programmable logic devices) или FPGA (free programmable gate arrays). Использование спинтронной схемотехники позволит создавать на том же чипе быстродействующую энергонезависимую память сверхвысокой плотности, не стираемую при выключении питания.
Несмотря на то что основные рабочие элементы разрабатываемых нанотранзисторов имеют некремниевую основу, уже имеется проработка технологии их изготовления с системной интеграцией на кремниевой подложке. Использование кремния позволяет наиболее эффективно приспособить технологические возможности современной микроэлектроники для нужд нарождающейся наноэлектроники. В частности, базовый кремниевый кристалл может быть использован для создания интерфейсного обрамления наночипа в стандарте TTL. Темп нынешних работ таков, что к тому времени, когда рынок электроники будет наполнен устройствами мезоэлектроники с разрешением 20–30 нм (примерно через десять лет), должны появиться первые экспериментальные образцы универсальных программируемых молекулярно-кластерных и спинтронных чипов с кремниевым интерфейсным TTL-обрамлением. Все это выглядит вполне реальным, так как базисные логические функции типа ИЛИ-НЕ на основе углеродных нанотрубок уже изготовлены и испытаны.