Автор работы: Пользователь скрыл имя, 02 Ноября 2010 в 14:48, Не определен
Актуальность темы. Системы телевизионного наблюдения предназначены для обеспечения безопасности на объекте. Они позволяют наблюдателю следить за одним или несколькими объектами, находящимися порой на значительном расстоянии как друг от друга, так и от места наблюдения. В настоящее время системы телевизионного наблюдения не являются экзотикой, они находят все более широкое применение во многих сферах человеческой жизни. Наиболее простая система телевизионного наблюдения - это камера, подключенная к телевизору или монитору, такая система позволяет наблюдать за ребенком или автомобилем возле дома
1.2. Устройства
и основные принципы работы
элементов телевидения
Основу любой системы
1. Преобразователь свет-сигнал.
2. Синхронизация.
3. Авто диафрагма.
4. Фокусное расстояние.
5. Относительное отверстие.
6. Формат матрицы.
7. Чувствительность.
8. Отношение сигнал/шум.
9.
Устройства и основные
Преобразование свет-сигнал
С физической точки зрения
ПЗС интересны тем, что
В основе работы ПЗС лежит
явление внутреннего
электрон и дырка. Электростатическое поле в области пикселя “растаскивает” эту пару, вытесняя дырку вглубь кремния. Не основные носители заряда, электроны, будут накапливаться в потенциальной яме под электродом, к которому подведен положительный потенциал. Здесь они могут храниться достаточно длительное время, поскольку дырок в обедненной области нет и электроны не рекомбинируют. Носители, сгенерированные за пределами обедненной области, медленно движутся - диффундируют и, обычно, рекомбинируют с решеткой прежде, чем попадут под действие градиента поля обедненной области. Носители, сгенерированные вблизи обедненной области, могут диффундировать в стороны и могут попасть под соседний электрод. В красном и инфракрасном диапазонах длин волн ПЗС имеют разрешение хуже, чем в видимом диапазоне, так как красные фотоны проникают глубже в кристалл кремния и зарядовый пакет размывается.
Заряд, накопленный под одним электродом, в любой момент может быть перенесен под соседний электрод, если его потенциал будет увеличен, в то время как потенциал первого электрода будет уменьшен. Перенос в трехфазном ПЗС можно выполнить в одном из двух направлений (влево или вправо, по рисункам). Все зарядовые пакеты линейки пикселов будут переноситься в ту же сторону одновременно. Двумерный массив (матрицу) пикселов получают с помощью стоп-каналов, разделяющих электродную структуру ПЗС на столбцы. Стоп каналы - это узкие области, формируемые специальными технологическими приемами в приповерхностной области, которые препятствуют растеканию заряда под соседние столбцы.
1.3. Строение
ПЗС-матрицы камеры
Большинство типов ПЗС-матриц, изготавливаемых на промышленной основе, ориентированы на применение в телевидении, и это находит отражение на их внутренней структуре. Как правило, такие матрицы состоят из двух идентичных областей - области накопления и области хранения.
По отношению размеров
- матрицы с кадровым переносом для прогрессивной развертки;
- матрицы с кадровым переносом для черезстрочной развертки.
Существуют также матрицы, в
которых отсутствует секция хранения,
и тогда строчный перенос
Область хранения защищена от
воздействия света
ПЗС с черезстрочной (
современной разработки выпускает, например, фирма Philips. Такими матрицами снабжены телекамеры серии LTC 03, LTC 04. Так телекамера LTC 0350 снабжена автоматическим электронным затвором 1/50 — 1/100000 сек, работающим с форматом матрицы 1/3 дюйма и размером 752х582 пиксел.
Самые простые по устройству ПЗС состоят из электродной структуры,
осажденной прямо на слой изолятора, сформированного на поверхности пластины однородно легированного р-кремния. Заряд накапливается и переносится непосредственно в приповерхностном слое полупроводника. Такие приборы называются ПЗС с поверхностным каналом. Для поверхностного слоя характерно большое количество дефектов, что негативно влияет на эффективность переноса зарядов. Заряды захватываются на дефектах поверхностного слоя и медленно высвобождаются. Это приводит к размазыванию изображения. Дефекты поверхностного слоя могут также спонтанно эмитировать заряды, приводя к увеличению темного сигнала (тока). Поверхностные состояния являются фактором, ограничивающим работоспособность ПЗС. Толщина рабочей части приборов с зарядовой связью составляет единицы микрон. Изготавливаются они, как правило, на основе очень тонких полупроводниковых плёнок, выращенных на сравнительно толстом основании – подложке.
Электроды ПЗС-матриц. В течение некоторого времени после изобретения чаще всего изготавливались в одном слое металла. Слой алюминия толщиной около 1 мкм наносили на прибор испарением. Затем путем фотолитографии формировали электроды. Наиболее критичным этапом в технологическом цикле изготовления одноуровневой структуры этого типа является вытравливание межэлектродных зазоров. Для обеспечения хорошего переноса зарядовых пакетов надо, чтобы потенциальные ямы соседних электродов перекрывались. Глубина потенциальной ямы зависит от степени легирования кремния и величины приложенного к электроду потенциала. Типичные значения - единицы микрон. Отсюда следует, что межэлектродные зазоры не должны быть больше единиц микрон. Суммарная длина этих узких зазоров в больших приборах весьма велика.
Для слаболегированного материала подложки (концентрация атомов
акцептора около1015 1/см3, толщина окисла 0.1 мкм и умеренный размах
тактовых импульсов порядка 10 В) обедненный слой проникает в кремний на глубину примерно 1 мкм. Вспомним, что в каждом кубическом сантиметре твердого вещества содержится примерно 1022 атомов. Концентрация 1015 атомов примеси в 1 см3 соответствует 1 атому примеси на 10 миллионов атомов Si.
Понятно, что любое случайное замыкание соседних электродов,
произошедшее на одной из операций технологического цикла, полностью выведет прибор из строя. Последующее развитие ПЗС-технологии было направлено на создание структур, свободных от недостатков первых технологий и работающих с более простыми управляющими напряжениями.
Синхронизации LINE LOCK. Этот вариант
синхронизации может быть
Внешняя синхронизация. Такой
вариант синхронизации
опорного источника сигнала. Затем этот сигнал распределяется на каждую
камеру посредством специального коаксиального кабеля. Опорный сигнал может быть сформирован генератором синхросигналов. Также в качестве опорного сигнала может быть использован сигнал с видеовыхода одной из камер. Такие варианты предполагают применение дополнительных соединений и кабелей, однако, являются единственными способами осуществления синхронизации для камер с питанием постоянного тока, которые не могут быть синхронизированы по питанию (LINE LOCK).
Автоматический электронный
Автодиафрагма. В течение
Объективы с автоматической
Фокусное расстояние объектива[
Исходя из выше сказанного, объективы
принято делить на нормальные,
короткофокусные (
Объективы, фокусное расстояние которых
может изменяться более чем в 6 раз, называются
ZOOM–объективами (объективами с трансфокатором).
Данный класс объективов применяется
при необходимости детального просмотра
объекта, удаленного от камеры. Например,
при использовании ZOOM–объектива с десятикратным
увеличением, объект, находящийся на расстоянии
100 м, будет наблюдаться как объект, удаленный
на расстоянии 10 м. Наиболее часто используются
ZOOM–объективы, оборудованные электроприводами
для управления диафрагмой, фокусировкой
и увеличением (motorized zoom). Управление камерой,
оборудованной данным объективом, оператор
может осуществлять с удаленного поста[5,
с.243].
Относительное отверстие.
F минимально - полностью открытая диафрагма.
F максимально - диафрагма закрыта.
Значение F влияет на выходное изображение. Малое F означает, что
объектив пропускает
больше света, соответственно, камера
лучше работает в темное время суток.
Формат матрицы. Важный
Этот параметр определяет