Промышленные роботы

Автор работы: Пользователь скрыл имя, 20 Октября 2009 в 19:41, Не определен

Описание работы

Реферат по гидравлике

Файлы: 1 файл

ref12277.doc

— 149.00 Кб (Скачать файл)

      Сложившееся у широких слоев населения  под влиянием средств массовой информации идеализированное представление о роботах, которые якобы способны полностью заменить людей на производстве и позволяют в кратчайшие сроки осуществить «технологическую революцию», перестроить основы промышленного производства и т. и., не отражает реального положения дел. В действительности же осуществляемое быстрыми темпами массовое внедрение роботизированных систем во многом дестабилизировало промышленное производство и породило немало серьезных проблем. Это произошло потому, что реальные возможности роботов были преувеличены и некоторые образцовые примеры преподносились как типичные. Такое упрощенное и неточное представление о роботах небезвредно хотя бы потому, что маскирует проблемы, с которыми приходится сталкиваться на практике, и может побудить потребителей сделать необоснованный выбор.

      Превратное  понимание роботизации, нацеливание  ее не на решение коренных проблем  повышения эффективности производства (качество, производительность, себестоимость), а лишь на имитацию некоторых ручных действий человека в надежде, что  все остальное приложится, тоже не столь безобидны, как это может показаться.

      Во-первых, отсюда лишь один шаг до роботизации  ради самой роботизации. И как  следствие—разочарование и дискредитация, потому что производство с его  суровыми законами неизбежно отторгает  дорогие, тихоходные и малонадежные конструкции. Во-вторых, и сами разработчики, действуя по принципу «лишь бы робот, лишь бы манипулировал», начинают искать самые легкие, а не самые эффективные пути.

      Ведь  с точки зрения возможностей повышения  эффективности производства различные типы роботов далеко не равнозначны. Так, их применение на операциях сварки, окраски, нанесения гальванопокрытий, очистки позволяет существенно повышать качество продукции прежде всего за счет стабилизации технологических режимов. Производительность оборудования повышается здесь за счет «многорукости», быстродействия, увеличенной грузоподъемности, человек полностью выводится из рабочей зоны и избавляется от труда в неблагоприятной среде.

      В то же время при загрузке металлорежущих станков промышленные роботы на качество изделий не влияют. По производительности оборудования, как правило, получается проигрыш, так как ручная загрузка деталей массой до 3—5 кг выполняется человеком в несколько раз быстрее. Следовательно, выигрыш можно получить лишь по фонду заработной платы, да и то незначительный, так как один рабочий обслуживает 2—3 станка с ЧПУ и без роботов. Почему же тогда подавляющее большинство разработок адресуется не сварке, окраске, гальванопроизводству, а загрузке металлорежущих станков или прессов, т.е. наименее перспективным направлениям? Ответ один — если подходить к роботизации как к задаче имитации действий человека, то так проще, легче, удобнее.

      Длительное время большинство промышленных роботов создавалось как конструкции напольного типа, что явилось следствием вольного или невольного подражания человеку, который стоя обслуживает станок.

      По нашим  данным, промышленные роботы напольной  конструкции составляют 53 % общего количества, еще 39%—с креплением на базовых узлах оборудования и лишь 8 % — подвесные конструкции (портальные и т. д.).

      Между тем напольные конструкции — самые нерациональные и неэкономичные, так как требуют значительных дополнительных площадей, вызывают психологическое напряжение при наладке и обслуживании, имеют минимальные возможности «многостаночного» обслуживания.

    А ведь промышленные роботы могут работать «вниз головой», и даже лучше!

      Робот роботу рознь! И хотя автор высказывает  эту очевидную мысль, но во всем остальном  содержании книги какой-либо отличительной  черты между роботами транспортно-загрузочными и технологическими не проводится, перспективность и эффективность промышленных роботов рассматриваются как некая всеобщая и в общем бесконфликтная категория.

      Практика  сегодняшнего дня развеивает подобные иллюзии. На сегодняшний день потенциально эффективными являются прежде всего роботы для точечной и шовной сварки, в том числе в автомобильной промышленности. Но и здесь опыт внедрения говорит о тяжелом и сложном процессе повышения мобильности роботов, их быстродействия и надежности в работе, который необходимо пройти, пока потенциальные возможности не станут реальностью.

      По сравнению  с традиционными поточными и  автоматическими сварочными линиями  автомобильной промышленности роботизированные комплексы должны по идее обеспечивать значительно большую гибкость работы оборудования: при переходе к выпуску любой новой модели автомобиля в принципе достаточно ввести необходимые изменения в программу, с помощью которой осуществляется управление роботом. В действительности, однако, столь гибкие системы пока еще не существуют. На сегодняшний день роботизированные комплексы приспособлены к выпуску весьма ограниченного числа видов продукции. Если, например, квалифицированному рабочему для перехода от одной производственной операции к другой практически требуется всего несколько секунд, то перепрограммирование роботов или при наличии требуемой программы их переналадка в связи с переходом к производству автомобиля с другим типом кузова, хотя и прежней модели, представляет собой достаточно сложный процесс. Реальные сдвиги в этой области произойдут лишь с внедрением в производство новых поколений промышленных роботов, обладающих значительно большим объемом «памяти», и с разработкой более совершенных языков программирования. Достаточно малейшей неисправности одного из роботов, и работа на всей линии автоматически прекращается. Оборудование, таким образом, простаивает, причем зачастую при определении причины отказа и степени серьезности неисправности представители ремонтных служб делают неточные заключения и прогнозы, завышая или занижая предполагаемые затраты времени, необходимого для устранения неисправности.

      Не случайно поэтому на многих промышленных предприятиях в конце каждой конвейерной линии  дополнительно устанавливают оборудование, позволяющее выполнять вручную те операции, которые не смог осуществить тот или иной вышедший из строя робот. Подобные действия, в результате которых доля ручного труда на роботизированных участках в короткий срок возрастает до 30—40 °/о, нередко становятся поводом для серьезных проблем.

      К настоящему времени миф о непогрешимости и всемогуществе промышленных роботов, согласно которому автоматизация производства сводится к его роботизации, замене рабочих на производстве промышленными  роботами, ничего, кроме вреда, не приносит. Концепция эта подразумевает, что технологические процессы, конструкции и компоновки машин остаются в основном на прежнем уровне, но высвобождаются от необходимого присутствия человека. Это неверно. Содержание любого процесса производства составляли и будут составлять технологические процессы получения материалов, их обработки, контроля и сборки изделий, материализованные в конструкциях и компоновках машин, аппаратов и их систем. Именно в них закладываются все потенциальные возможности качества и количества выпускаемой продукции, экономической эффективности производства. Никакая автоматика и робототехника не может дать более того, что заложено в технологии.

      Между тем все технологические процессы неавтоматизированного производства обладают невысоким потенциалом из-за низкой интенсивности, отсутствия концентрации операций, их совмещения во времени. Одностороннее замещение функций человека в системах, которые десятилетиями складывались применительно к ограниченным возможностям, бесперспективно.

      Немалое количество автоматизированного роботизированного оборудования, спроектированного высококвалифицированными разработчиками, оказалось неудачным лишь потому, что все усилия разработчиков были направлены на «искоренение» ручных операций, а вопросы качества продукции, быстродействия машин и их надежности в работе упускались из виду. Иначе говоря, правильные общие лозунги типа «ручной труд—на плечи машин» иногда понимаются формально и прямолинейно, а автоматизацию пытаются свести к созданию технических средств, имитирующих ручные действия человека при манипулировании или управлении машинами. В результате появляется новая техника, работающая, как сейчас модно говорить, по «безлюдной технологии», но громоздкая и дорогая, малопроизводительная и ненадежная, а в итоге экономически неэффективная.

      Автоматизация производства есть комплексная конструкторско-технологическая  задача создания новой техники, принципиально  отличной от технического арсенала средств  неавтоматизированного производства.

      Генеральное направление комплексной автоматизации производственных процессов — не в замене человека при обслуживании известных машин и аппаратов, а в создании высокоинтенсивных технологических процессов и высокопроизводительных средств производства, которые были бы вообще невозможны при непосредственном участии человека.

      Правильное  понимание сущности автоматизации, основной направленности работ в этой области является необходимой предпосылкой формирования научных принципов и научных основ технической политики в области роботизации на производственном уровне.

      Особенностью  современного этапа научно-технического прогресса является то, что определяющим фактором при разработке новой техники становится ограниченность материальных и людских ресурсов. Необходимо так выбирать ограниченное количество объектов разработки, чтобы при реальных возможностях получать наибольшие социально-экономические результаты.

      В стратегическом плане это означает поворот к  первоочередному техническому перевооружению именно тех звеньев производства, где мы можем добиться результатов благодаря применению прогрессивной технологии, новых методов и процессов,—-концентрации операций, многопозиционной и многоинструментной обработки или сборки.

      В тактическом  плане это означает избегать тиражирования  тех технических средств роботизации, которые не обеспечивают высоких конечных результатов или эти результаты односторонние, например сокращение времени ручного обслуживания. При этом в конкретных производственных условиях следует руководствоваться наряду с известными методами расчетов и обоснований рядом принципов технической политики.

      Первый  принцип—принцип достижения конечных результатов: средства роботизации должны не просто имитировать или замещать действия человека, а выполнять производственные функции быстрее и лучше, лишь тогда они будут по-настоящему эффективными. Изменение численности какой-либо категории работающих или замена ручного манипулирования автоматическим — не цель и не результат.

      Анализ  работ по автоматизации показывает, что 60— 70 % экономического эффекта получается благодаря более высокой производительности автоматизированного оборудования по сравнению с неавтоматизированным; 15—20 % — за счет повышения или стабилизации качества и лишь 10—15%—благодаря экономии фонда заработной платы. Поэтому при планировании и обосновании работ по роботизации необходимо предварительно проанализировать, как могут повлиять намечаемые мероприятия на качество и количество выпускаемой продукции; численность обслуживающего персонала.

      Именно  такие факторы обеспечили приоритетное развитие технологических промышленных роботов, которые позволяют получить выигрыш по всем источникам эффективности благодаря улучшению качества изделий, повышению производительности машин, сокращению численности производственного персонала, работающего в тяжелых и вредных условиях производства.

      Второй  принцип технической политики при  роботизации производства — принцип комплексности подхода. Все важнейшие компоненты производственного процесса—объекты производства, технологии, основное и вспомогательное оборудование, системы управления и обслуживания,  кадры, удаление отходов — должны быть рассмотрены и в конечном итоге решены на новом, более высоком уровне. Иногда достаточно упустить из поля зрения хотя бы один компонент производственного процесса, например конструкцию изделия, и вся система мероприятий по автоматизации оказывается неэффективной. Тем более неперспективны попытки сводить автоматизацию лишь к преобразованию отдельных компонентов, скажем, созданию сложных и дорогих систем микропроцессорного управления при сохранении отсталой технологии, а таких примеров немало. И промышленные роботы, и автоматизированные системы управления должны разрабатываться и внедряться с учетом прогресса технологии и конструкции и в комплексе приспосабливаться к требованиям производства — лишь тогда они будут эффективными.

      Третий  принцип технической политики при  автоматизации производства — принцип необходимости: средства роботизации, включая самые перспективные и прогрессивные, должны применяться не там, где их можно приспособить, а там, где без них нельзя обойтись.

      Значимость  современных средств электроники  и вычислительной техники — не только и не столько в замене функций человека при обслуживании известных машин, но прежде всего в открывающихся возможностях создания на их основе средств производства, которые раньше не могли быть созданы.

Информация о работе Промышленные роботы