Проектирование систем управления процессом загрузки щепы в варочный котел в среде Metso DNA

Автор работы: Пользователь скрыл имя, 21 Июня 2015 в 12:57, дипломная работа

Описание работы

Объектно-ориентированное программирование - это новый подход к созданию программ. По мере развития вычислительной техники возникали разные методики программирования. На каждом этапе создавался новый подход, который помогал программистам справляться с растущим усложнением программ. Первые программы создавались посредством ключевых переключателей на передней панели компьютера. Очевидно, что такой способ подходит только для очень небольших программ. Затем был изобретён язык ассемблера, который позволял писать более длинные программы. Следующий шаг был сделан в 1950 году, когда был создан первый язык высокого уровня Фортран.

Содержание работы

Объектно-ориентированное программирование 3
Общая характеристика технической служебной программы FbCAD 3
Назначение FbCAD 3
Функциональные схемы систем АСР 7
Математическое обеспечение САПР 7
Математическое обеспечение САПР 8
Требования к математическому обеспечению 8
Математическое моделирование объектов и устройств автоматизации 9
Требования к математическим моделям 9
Классификация математической модели 10
Математические модели на микро-, макро- и метауровнях 11
Макромоделирование 12
Анализ чувствительности 12
Статистический анализ 13
Методика получения математических моделей элементов и устройств
автоматизации 15
Моделирование технических объектов на метауровне 15
Постановка задачи автоматического формирования математических моделей
систем на макроуровне 15
Вывод 17
Реферат
Список литературы

Файлы: 1 файл

Курашов САПР.docx

— 124.21 Кб (Скачать файл)

 

 

 

 

 

 

Рис.9. Функциональная схема управления двигателем в дозаторе щепы.

 

  1. Математическое обеспечение автоматизации проектирования.

Наиболее сложным этапом создания САПР является разработка математического обеспечения. Последнее во многом определяет производительность и эффективность работы САПР в целом. Математическое обеспечение САПР базируется на алгоритмах, по которым разрабатывают программное обеспечение (ПО) САПР. Математическое обеспечение САПР включает разнообразные элементы, среди которых имеются инвариантные — принципы разработки функциональных моделей, методы численного решения уравнений, поиски экстремума. По назначению и способом реализации математического обеспечения САПР подразделяется на две части:

  • математические методы и построение на их основе математические модели объектов проектирования;
  • формализованное описание технологии автоматизированного проектирования.

 

 

    1. Математическое обеспечение САПР.

Математическое обеспечение САПР состоит из математических моделей объектов проектирования, методов и алгоритмов выполнения проектных операций и процедур .

В математическом обеспечении САПР можно выделить специальную часть, в значительной мере отражающую специфику объекта проектирования, физические и информационные особенности его функционирования и тесно привязанную к конкретным иерархическим уровням (эта часть охватывает математические модели, методы и алгоритмы их получения, методы и алгоритмы одновариантного анализа, а также большую часть используемых алгоритмов синтеза), и инвариантную часть, включающую в себя методы и алгоритмы, слабо связанные с особенностями математических моделей и используемые на многих иерархических уровнях (это методы и алгоритмы многовариантного анализа и параметрической оптимизации) .

 

    1. Требования к математическому обеспечению.

Свойства математического обеспечения (МО) оказывают существенное, а иногда и определяющее влияние на возможности и показатели САПР.

При выборке и разработке моделей, методов и алгоритмов необходимо учитывать требования, предъявляемые к МО в САПР. Рассмотрим основные из них:

  • Универсальность;

Под универсальностью МО понимается его применимость к широкому классу проектируемых объектов. Одно из отличий расчетных методов в САПР от ручных расчетных методов - высокая степень универсальности. Например, в подсистеме схемотехнического проектирования САПР ИЭТ используются математические модели транзистора, справедливые для любой области работы (активной, насыщения, отсечки, инверсной активной), а методы получения и анализа моделей применимы к любой аналоговой или переключательной схеме на элементах из разрешенного списка; в подсистеме структурного проектирования САПР ЭВМ используются модели и алгоритмы, позволяющие исследовать стационарные и нестационарные процессы переработки информации при произвольных законах обслуживания в устройствах ВС и при произвольных входных потоках.

Высокая степень универсальности МО нужна для того, чтобы САПР была применима к любым или большинству объектов, проектируемых на предприятии.

  • Алгоритмическая надежность;

Методы и алгоритмы, не имеющие строгого обоснования, называют эвристическими. Отсутствие четко сформулированных условий применимости приводит к тому, что эвристические методы могут использоваться некорректно. В результате либо вообще не будет получено решение (например, из-за отсутствия сходимости), либо оно будет далеким от истинного. Главная неприятность заключается в том, что в распоряжении инженера может не оказаться данных, позволяющих определить, корректны или нет полученные результаты. Следовательно, возможна ситуация, когда неверное решение будет использоваться в дальнейшем как правильное.

Свойство компонента МО давать при его применении в этих условиях правильные результаты называется алгоритмической надежностью. Степень универсальности характеризуется заранее оговоренными ограничениями, а алгоритмическая надежность - ограничениями, заранее не выявленными и, следовательно, не оговоренными.

Количественной оценкой алгоритмической надежности служит вероятность получения правильных результатов при соблюдении оговоренных ограничений на применение метода. Если эта вероятность равна единице или близка к ней, то говорят, что метод алгоритмически надежен.

Применение алгоритмичности ненадежных методов в САПР нежелательно, хотя и допустимо в случаях, когда неправильные результаты легко распознаются.

С проблемой алгоритмической надежности тесно связана проблема обусловленности математических моделей и задач. О плохой обусловленности говорят в тех случаях, когда малые погрешности исходных данных приводят к большим погрешностям результатов. На каждом этапе вычислений имеются свои промежуточные исходные данные и результаты, свои источники погрешностей. При плохой обусловленности погрешности могут резко возрасти, что может привести как к снижению точности, так и к росту затрат машинного времени.

 

  • Точность;

Для большинства компонентов МО важным свойством является точность, определяемая по степени совпадения расчетных и истинных результатов. Алгоритмически надежные методы могут давать различную точность. И лишь в тех случаях, когда точность оказывается хуже предельно допустимых значений или решение вообще невозможно получить, говорят не о точности, а об алгоритмической надежности.

В большинстве случаев решение проектных задач характеризуется:

  • совместным использованием многих компонентов МО, что затрудняет определение вклада в общую погрешность каждого из компонентов;
  • векторным характером результатов (например, при анализе находят вектор выходных параметров, при оптимизации - координаты экстремальной точки), т.е. результатом решения является значение не отдельного параметра, а многих параметров.

В связи с этим оценка точности производится с помощью специальных вычислительных экспериментов. В этих экспериментах используются специальные задачи, называемые тестовыми. Количественная оценка погрешности результата решения тестовой задачи есть одна из норм вектора относительных погрешностей: m-норма или l-норма, где l - относительная погрешность определения j-го элемента вектора результатов; m - размерность этого вектора.

  • Затраты машинного времени;

Универсальные модели и методы характеризуются сравнительно большим объемом вычислений, растущим с увеличением размерности задач. Поэтому при решении большинства задач в САПР затраты машинного времени Tм значительны. Обычно именно Tм являются главным ограничивающим фактором при попытках повысить сложность проектируемых на ЭВМ объектов и тщательность их исследования. Поэтому требование экономичности по Tм - одно из основных требований к МО САПР.

При использовании в САПР многопроцессорных ВС уменьшить время счета можно с помощью параллельных вычислений. В связи с этим один из показателей экономичности МО - его приспособленность к распараллеливанию вычислительного процесса.

В САПР целесообразно иметь библиотеки с наборами моделей и методов, перекрывающими потребности всех пользователей САПР.

  • Используемая память;

Затраты памяти являются вторым после затрат машинного времени показателем экономичности МО. Они определяются длиной программы и объемом используемых массивов данных. Несмотря на значительное увеличение емкости оперативной памяти в современных ЭВМ, требование экономичности по затратам памяти остается актуальным. Это связано с тем, что в мультипрограммном режиме функционирования ЭВМ задача с запросом большого объема памяти получает более низкий приоритет и в результате время ее пребывания в системе увеличивается.

Улучшить экономичность по затратам оперативной памяти можно путем использования внешней памяти. Однако частые обмены данными между оперативной памятью и внешней могут привести к недопустимому росту Tм. Поэтому при больших объемах программ и массивов обрабатываемой информации целесообразно использовать МО, допускающее построение оверлейных программных структур и реализующее принципы диакоптической обработки информации .

 

  1. Математическое моделирование объектов и устройств автоматизации в САПР.

 

    1. Требования к математическим моделям.

Математические модели (ММ) служат для описания свойств объектов в процедурах автоматизированного проектирования. Если проектная процедура включает создание ММ и оперирование ею с целью получения полезной информации об объекте, то говорят, что процедура выполняется на основе математического моделирования.

К математическим моделям предъявляются требования универсальности, адекватности, точности и экономичности .

Степень универсальности ММ характеризует полноту отображения в модели свойств реального объекта. Математическая модель отражает лишь некоторые свойства объекта.

Точность ММ оценивается степенью совпадения значений параметров реального объекта и значений тех же параметров, рассчитанных с помощью оцениваемой ММ.

Адекватность ММ - способность отражать заданные свойства объекта с погрешностью не выше заданной. Поскольку выходные параметры являются функциями векторов параметров внешних Q и внутренних Х, погрешность Ej зависит от значений Q и Х.

Обычно значения внутренних параметров ММ определяют из условия минимизации погрешности Eм в некоторой точке Qном пространства внешних переменных, а используют модель с рассчитанным вектором при различных значениях Q. При этом, как правило, адекватность модели имеет место лишь в ограниченной области изменения внешних переменных - области адекватности (АО) математической модели:

OA = {Q|Em, d}, где d - заданная константа, равная предельно допустимой погрешности модели.

Экономичность ММ характеризуется затратами вычислительных ресурсов. Чем они меньше, тем модель экономичнее.

 

    1. Классификация математических моделей.

Рассмотрим основные признаки, классификации и типы ММ, применяемые в САПР.

  1. По характеру отображаемых свойств объекта ММ делятся на структурные и функциональные.
    1. Структурные ММ предназначены для отображения структурных свойств

объекта. Различают структурные ММ топологические и геометрические.

      1. В топологических ММ отображаются состав и взаимосвязи элементов. Их чаще всего применяют для описания объектов, состоящих из большого числа элементов, при решении задач привязки конструктивных элементов к определенным пространственным позициям (например, задачи компоновки оборудования, размещения деталей, трассировки соединений) или к относительным моментам времени (например, при разработке расписаний, технологических процессов). Топологические модели могут иметь форму графов, таблиц (матриц), списков и т.п.
      2. В геометрических ММ отображаются свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; совокупностью алгебраических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов, и т.п. Геометрические ММ применяют при решении задач конструирования в машиностроении, приборостроении, радиоэлектронике, для оформления конструкторской документации,  при задании исходных данных на разработку технологических процессов изготовления деталей. Используют несколько типов геометрических ММ.
    1. Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.
  1. По степени детализации описания в пределах каждого иерархического уровня выделяют полные ММ и макромодели.
    1. Полная модель - эта модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлементных связей (т.е. состояние всех элементов проектируемого объекта).
    2. Макромодель - ММ, в которой отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупненном выделении элементов.
  2. По способу представления свойств объекта функциональные ММ делятся на аналитические и алгоритмические.
    1. Аналитические ММ представляют собой явные выражения выходных параметров как функций входных и внутренних параметров.
    2. Алгоритмические ММ выражают связи выходных параметров с параметрами внутренними и внешними в форме алгоритма.
  3. Имитационная ММ - это алгоритмическая модель, отражающая поведение исследуемого объекта во времени при задании внешних воздействий на объект.

 

    1. Математические модели на микро-, макро- и метауровнях.

Описания технических объектов должны быть по сложности согласованы с возможностями восприятия человеком и с возможностями ЭВМ оперировать описаниями моделей в процессе их преобразования при проектировании. Однако выполнить это требование в рамках некоторого единого описания, не расчленяя его на отдельные составные части, удается лишь для простых изделий. Как правило, требуется структурирование описаний и соответствующее расчленение представлений о проектируемых объектах на иерархические уровни и аспекты. Это позволяет распределять работы по проектированию сложных объектов между подразделениями проектной организации, что способствует эффективности и производительности труда проектировщиков .

Использование принципов блочно-иерархического подхода к проектированию структур математических моделей проектируемых объектов позволяет формализовать процесс их написания. Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако иерархические уровни большинства предметных областей можно отнести к одному из трех обобщенных уровней, называемых далее микро-, макро- и метауровнями .

В зависимости от места в иерархии описания математические модели делятся на ММ, относящиеся к микро-, макро- и метауровням.

Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывном пространстве и времени. Типичные ММ на микроуровне - дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрические потенциалы и напряжения, давления и температуры и т.п. Возможности применения ММ в ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время t, а вектор зависимых переменных составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости в механических системах, напряжения и токи в электрических системах, давления и расходы жидкостей и газов в гидравлических и пневматических системах и т.п. Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10000, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне .

Информация о работе Проектирование систем управления процессом загрузки щепы в варочный котел в среде Metso DNA