Прибор для регистрации ЭЭГ сигнала по системе 10-20 для выявления альфа-ритма с каналом общей ЭЭГ

Автор работы: Пользователь скрыл имя, 24 Октября 2009 в 15:15, Не определен

Описание работы

Разработка электроэнцефаллографа

Файлы: 1 файл

Прибор для регистрации ЭЭГ сигнала по системе 10-20 для выявления альфа-ритма с каналом общей ЭЭГ.doc

— 1.03 Мб (Скачать файл)

6) многоэлектродные  иглы.  

 

Рис.1. Типы электродов и способы их крепления на голове.

     Электроды не должны иметь собственного потенциала. Электроэнцефалографическая установка  состоит из электродов, соединительных проводов, электродной распределительной  коробки с пронумерованными гнездами, коммутационного устройства и некоторого количества каналов регистрации, позволяющих определенное количество независимых друг от друга процессов. При этом необходимо иметь в виду, что 4-канальные электроэнцефалографы непригодны для диагностических целей, так как позволяют выявить только грубые изменения, генерализованные по всей конвекситальной поверхности, 8-12-канальные пригодны только для общих диагностических целей – оценки общего функционального состояния и выявления грубой очаговой патологии. Только наличие 16 и более каналов позволяет регистрировать биоэлектрическую активность всей поверхности мозга одновременно, что дает возможность проводить самые тонкие исследования.

     Отведение биопотенциалов обязательно осуществляют двумя электродами, так как для  их регистрации необходима замкнутая электрическая цепь: первый электрод→усилитель→регистрирующий прибор→усилитель→второй электрод. Источником колебаний потенциала является участок мозговой ткани, лежащий между этими двумя электродами. В зависимости от способа расположения этих двух электродов различают биполярное и монополярное отведения. С целью экономии времени (так как набор этих комбинаций на селекторе является очень трудоемким процессом) в современных электроэнцефалографах используют заранее фиксированные схемы отведений (монтажные схемы, рутинные программы и т. п.). Наиболее рациональным для осуществления топического анализа с использованием электроэнцефалографии являются следующие принципы построения монтажных схем: первая монтажная схема - биполярные отведения с большими межэлектродными расстояниями, соединения электродов в пары по сагиттальным и фронтальным линиям; вторая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям; третья - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по фронтальным линиям; четвертая - монополярные отведения с индифферентными электродами на ухе и по методу Гольдмана; пятая - биполярные отведения с малыми межэлектродными расстояниями с соединением электродов в пары по сагиттальным линиям и регистрации движений глаз, ЭКГ или кожно-гальванической реакции при проведении нагрузок.

     Канал электроэнцефалографа  включает в  себя усилитель биопотенциалов с  большим коэффициентом усиления, позволяющим усиливать биоэлектрическую активность от единицы микровольт до десятков вольт. В настоящее время чаще применяют электромагнитные вибраторы с различными методами регистрации (чернильная, штифтовая, струйная, игольчатая), которые позволяют регистрировать колебания в зависимости от параметров регистрирующего устройства до 300Гц.

     В настоящее время в ЭЭГ используются компьютеры, которые выполняют рутинные измерения, при этом врач сохраняет полный контроль над всеми этапами анализа энцефалограммы. Анализ может быть выполнен прямо на экране компьютера без необходимой предварительной распечатки энцефалограммы, что, безусловно, очень удобно.

     С помощью всего лишь нескольких щелчков  мышью врач получает размеченную  электроэнцефалограмму и таблицу  всех стандартных численных параметров, которые необходимо указать в диагностическом заключении. Далее программа переходит к генерации диагностического заключения.

     Составление заключения сразу в электронной  форме – без необходимости  набора на клавиатуре значительных объемов текста – позволяет проводить законченный анализ большого числа электроэнцефалограмм прямо на экране компьютера без их распечатки.[2]

     Так как в ЭЭГ покоя не всегда выявляются признаки патологии, то, как и при  других методах функциональной диагностики, в клинической электроэнцефалографии применяются физические нагрузки, некоторые из которых являются обязательными: нагрузка для оценки ориентировочной реакции, нагрузка для оценки устойчивости к внешним ритмам (ритмическая фотостимуляция). Обязательной также является нагрузка, эффективная для выявления латентной (компенсированной) патологии, триггерная фотостимуляция - стимуляция в ритмах биоэлектрической активности самого мозга с помощью триггера-преобразователя волновых компонентов электроэнцефалограммы во вспышке света. С целью возбуждения основных ритмов мозга (альфа, дельта, тета и т. д.) используется метод "задержки" светового стимула.  

      Выбор метода:

Исходя из всех рассмотренных методов  регистрации и особенностей приборов, будем основываться на 16ти канальном электроэнцефалографе, метод регистрации по системе «10-20» – наиболее широко используемый метод расположения электродов на скальпе. Система основана на отношениях между  

Рис.2. Расположение электродов по системе «10-20».

расположением электродов и основными областями коры мозга.  Каждый участок имеет символ и номер, чтобы идентифицировать местоположение полушария.  Используемые символы:  "F" - Лобный лепесток, "T" - Временный лепесток, "C" - Центральный лепесток, "P" - Теменной лепесток, "O" - Затылочный лепесток. (Примечание: нет никакого центрального лепестка в мозговой коре, "C" используется только для идентификации).  Четные числа (2, 4, 6, 8) относятся к правому полушарию, и нечетные числа (1, 3, 5, 7) относятся к левому полушарию. "Z" относится к электроду, помещенному в середину. Чем меньший номер, тем ближе позиция к середине. "Fp" замещает полярную Переднюю сторону. "Nasion" - точка между лбом и носом. "Inion" - точка в задней части черепа."10" и "20" (Система 10-20) относятся к 10 %, и 20 %  расстоянию между электродами. 

     Выбираем  альфа-ритм, полоса частот 8-13 Гц, средняя амплитуда 30-70 мкВ.

     В качестве электродов применяем контактные накладные неприклеивающися электроды, которые прилегают к голове при помощи тяжелого шлема-сетки. Записывать потенциалы мозга будем в компьютер через шину USB, выводить результаты – на ЖК-дисплей. При этом открываются большие возможности по автоматизации анализа электроэнцефалограмм.

     Кроме того, компьютер выполняет все  рутинные измерения, при этом врач сохраняет полный контроль над всеми этапами анализа энцефалограммы. Анализ может быть выполнен прямо на экране компьютера без необходимой предварительной распечатки энцефалограммы.

 

     4. Разработка и описание структурной схемы.

       
 
 

…   …              … 
 

                             

       Рис. 3. Структурная схема.

       Структурная схема устройства представлена на рис. 3.  Она состоит из следующих основных блоков:

       Прибор содержит 16 электродов, необходимых для полного описания нервной активности. Электроды крепятся на голове пациента. Каждый электрод снимает потенциалы на определенном участке. Далее ставим гальваническую развязку для защиты человека от опасных напряжений, а так же для исключения возникновения паразитных токов в силовых цепях и цепях управления. Сигнал с электродов проходит через усилитель, фильтры и мультиплексор на АЦП микроконтроллера.

    АЦП, встроенный в микроконтроллер, разбивает  сигнал на цифровые отсчеты. Эти отсчеты  заносятся в память вместе с информацией  о пациенте, введенной с клавиатуры.  МК управляет работой энцефалографа в целом.

    Передача информации с МК на ЭВМ и с ЭВМ на МК происходит с помощью последовательного интерфейса USB, который аппаратно встроен в микроконтроллер. Интерфейс  USB 2.0 содержит интегрированный приемопередатчик, соответствующий спецификации шины USB 2.0 full-speed, буфер FIFO объемом 328 Байт, а так же поддерживает организацию четырех каналов передачи данных.

    Аппарат снабжен ЖК – дисплеем, на который  выводится буквенно – цифровая информация. ЖК – дисплей поддерживает русские  шрифты.

    После блока усилителей и фильтров ставят аналоговый регистратор, который предназначен для регистрации сигналов на бумажный носитель.  
5.
Разработка и описание функциональной схемы.

Рис. 4. Функциональная схема.

       На  рис. 4 представлена функциональная схема устройства, подробнее рассмотрим каждый блок схемы в отдельности для более наглядного представления о приборе в целом.

       1) В качестве электродов применяем контактные накладные неприклеивающися электроды, которые прилегают к голове при помощи тяжей шлема-сетки.

       Качество  регистрации высокочастотных колебаний  потенциалов электрического поля мозга  во многом зависит от используемых электродов. Так как вольтаж потенциалов  поверхности тела очень низкий, потери на преодоление сопротивления между  кожей и электродом должны быть сведены к минимуму. В связи с этим: 1 - 1,5 см2 – площадь поверхности электродов. Электроды выбираем из серебра или посеребренного металла исходя из принципа их наилучшей электропроводимости.

       2) Для защиты человека от опасных напряжений, а так же для исключения возникновения паразитных токов в силовых цепях и цепях управления ставим перед аналоговым блоком гальваническую развязку - это, соответственно, такая организация взаимодействия участков электрических цепей, при которой непосредственный контакт отсутствует. В качестве гальванической развязки выбираем устройство FDD03-15D4A DC-DC.

       3) Предусилитель осуществляет начальное усиление сигнала ЭЭГ. Предусилитель должен удовлетворять определенным требованиям: высокое входное сопротивление, чтобы не нагружать источник сигнала; входные цепи предусилителя должны также обеспечивать защиту пациента; частотный диапазон должен соответствовать спектру исследуемого сигнала. Поскольку эти сигналы имеют низкую амплитуду, важно чтобы полоса пропускания была не меньше, но и не больше, чем требуется.

       Исходя  из вышесказанного, предусилитель строим на 3-х ОУ. Такая схема имеет  более высокий входной импеданс и обеспечивает большое усиление и лучший КОСС по сравнению со схемами на одном ОУ. Кроме того, величина КОСС менее чувствительна к точности подбора резисторов.

     В качестве операционных усилителей выбираем К140УД1701А.

     4) Фильтр низких частот. Низкочастотные помехи, содержащиеся в полезном сигнале устраняем с помощью ФНЧ, используем ФНЧ Баттерворта 2-го порядка, который имеет максимально плоскую АЧХ, умеренную фазовую нелинейность, приемлемую переходную характеристику и достаточно крутой спад АЧХ вне полосы пропускания.

        5) Сигнал, снимаемый с пациента содержит высокочастотные помехи. Для их устранения ставим ФВЧ (фильтр высоких частот). В качестве ФВЧ используем ФВЧ Баттерворта 2-го порядка. Фильтр Баттерворта характеризуется высокой скоростью затухания и эффективно подавляет частоты, большие частоты среза.

       6) Для усиления отфильтрованного сигнала ставим внешний усилитель (ВУ) в инвертирующем включении перед АЦП. Это обеспечит нам необходимый для АЦП коэффициент усиления.

       7) Для записи потенциалов мозга на бумажный носитель после блока усилителей и фильтров реализуем выход на аналоговый регистратор. Выбираем в качестве регистратора прибор типа Н338, предназначенный для регистрации в аналоговой форме быстро протекающих процессов, изменяющихся в диапазонах от 0 до 150 Гц, преобразованных в соответствующее значение электрического напряжения. Запись показаний прибора осуществляется на теплочувствительной бумаге в прямоугольной системе координат. [13]

       8) После ВУ ставим мультиплексор, в данном случае две микросхемы, содержащие по 4 мультиплексора «2 в 1», так как у нас в микроконтроллере 8 – разрядное АЦП. Необходимо обработать информацию (сигнал), поступившую от нескольких датчиков с разделением времени. Выбираем микросхему К4519. Она обеспечивает коммутацию 16 каналов, позволяет проводить как адресную, так и последовательную выборки каналов. 

       9) Микроконтроллер представляет собой AT91SAM7S – семейство Atmel микроконтроллеров со встроенной флэш-памятью с малым числом внешних выводов, в основу которых заложено высокопроизводительное 32-битное ядро ARM7TDMI. Отличительными особенностями этих контроллеров является наличие встроенной высокоскоростной флэш-памяти (FLASH) и статической памяти (SRAM), большой набор периферийных узлов и модулей, включая порт USB2.0.

Информация о работе Прибор для регистрации ЭЭГ сигнала по системе 10-20 для выявления альфа-ритма с каналом общей ЭЭГ