Автор работы: Пользователь скрыл имя, 06 Сентября 2012 в 21:18, реферат
Подшипники служат опорами для валов и вращающихся осей, воспринимают радиальные и осевые нагрузки, приложенные к валу, и передают их на корпус машины. При этом вал должен фиксироваться в определенном положении и легко вращаться вокруг заданной оси. Во избежание снижения КПД машины потери в подшипниках должны быть минимальными.
По характеру трения подшипники разделяют на две большие группы:
- подшипники скольжения (трение скольжения);
- подшипники качения (трение качения).
1.Введение………………………………………………………………………………………………………….2
2. Назначение, типы, область применения, разновидности конструкций подшипников скольжения и подпятников, материалы для их изготовления ..3
3. Область применения, достоинства и недостатки подшипников скольжения............................................................................................................10
4. Работа подшипников скольжения при жидкостном режиме смазки и понятие об их расчете…………………………………………………………...11
5.Рекомендации по конструированию подшипников скольжения. ….............14
6.Список литературы ……………………………………………………………………………………….15
- сохранение работоспособности в особых условиях (в химически агрессивных средах, воде, при значительном загрязнении);
- бесшумность работы;
- виброустойчивость;
- простота изготовления и ремонта.
Недостатки подшипников скольжения:
- большое изнашивание вкладышей и цапф валов из-за трения;
- необходимость постоянного
ухода и большой расход
- значительные потери на трение в период пуска и при несовершенной смазке.
- значительные габариты в осевом направлении (длина вкладышей может достигать 3d, где d — диаметр цапфы вала).
Кроме того, следует иметь в виду, что массовое производство подшипников скольжения не организовано.
Подшипники скольжения следует применять там, где нельзя применить подшипники качения, а именно:
а) когда подшипник должен быть разъемным по оси (например, подшипники средних шеек коленчатого вала);
б) для очень больших нагрузок, когда подходящих стандартных подшипников качения подобрать нельзя;
в) для сверхбыстроходных валов, где центробежные силы инерции не допускают применения подшипников качения;
г) для работы в сильно загрязненной среде или воде.
Область применения:
- Для валов с ударными и вибрационными нагрузками (двигатели внутреннего сгорания, молоты и др.).
- Для коленчатых валов,
когда по условиям сборки
- Для валов больших
диаметров, для которых
- Для высокоскоростных
валов, когда подшипники
- При очень высоких
требованиях к точности и
- В тихоходных машинах, бытовой технике.
- При работе в воде и агрессивных средах, в которых подшипники качения непригодны.
Распространенное мнение, что подшипники скольжения дешевле подшипников качения, глубоко ошибочно.
Характерные дефекты и поломки подшипников скольжения вызваны трением:
- температурные дефекты (заедание и выплавление вкладыша);
- абразивный износ;
- усталостные разрушения вследствие пульсации нагрузок.
При всём многообразии и
сложности конструктивных вариантов
подшипниковых узлов скольжения
принцип их устройства состоит в
том, что между корпусом и валом
устанавливается тонкостенная втулка
из антифрикционного материала, как
правило, бронзы или бронзовых сплавов,
а для малонагруженных
Большинство радиальных подшипников имеет цилиндрический вкладыш, который, однако, может воспринимать и осевые нагрузки за счёт галтелей на валу и закругления кромок вкладыша. Подшипники с коническим вкладышем применяются редко, их используют при небольших нагрузках, когда необходимо систематически устранять ("отслеживать") зазор от износа подшипника для сохранения точности механизма.
Работа подшипников скольжения при жидкостном режиме смазки и понятие об их расчете.
При определении конструкции подшипника и соответствующем режиме работы может быть осуществлено трение со смазочным материалом. Работа подшипника в этих условиях подчиняется гидродинамической теории смазки.
Виды трения:
1. Сухое трение - без смазки.
2. Полужидкостное трение,
когда имеет место лишь
3. Жидкостное трение - только
между молекулярными слоями
Все виды трения существуют реально и используются практически.
Сухое трение применяется там, где трущиеся поверхности нельзя защитить от попадания грязи, пыли и абразива, (например, шарниры гусениц, оси подвесок гусеничных машин и проч.). В этих случаях подшипники без смазки имеют меньший износ.
Жидкостное трение - это идеальный расчетный вид трения, на который должны быть ориентированы все подшипники при установившемся режиме работы.
Полужидкостное трение имеет место при неустановившемся режиме (трогании с места, торможении, резких толчках и ударах). Основы теории смазки при жидкостном трении впервые разработаны русским ученым проф. Петровым. Он установил, что поток движущейся жидкости, взаимодействуя о наклонной пластиной, образует масляный клин и создает подъемную силу, величина которой пропорциональна скорости и вязкости жидкости и обратно пропорциональна квадрату минимального зазора. В подшипнике, при смещении вала под действием нагрузки на величину эксцентриситета, также образуется изогнутые масляный клин и возникает подъемная сила, которая при жидкостном трении уравновешивает реакцию опоры, и вал вращается, не касаясь подшипников.
Для правильной работы подшипников без износа поверхности цапфы и втулки должны быть разделены слоем смазки достаточной толщины.
Обеспечение режима жидкостного
трения является основным критерием
расчёта большинства
Расчет подшипников жидкостного трения выполняют на основе уравнений гидродинамики вязкой жидкости, связывающих давление, скорость и сопротивление смазочного материала вязкому сдвигу.
Рис.13
Критерием прочности, а следовательно, и работоспособности подшипника скольжения являются контактные напряжения в зоне трения или, что, в принципе, то же самое – контактное давление. Расчётное контактное давление сравнивают с допускаемым . Здесь N – сила нормального давления вала на втулку (реакция опоры), l - рабочая длина втулки подшипника, d – диаметр цапфы вала.
Иногда удобнее сравнивать
расчётное и допускаемое
Нм/мм2сек.
Произведение давления на скорость скольжения характеризует тепловыделение и износ подшипника. Наиболее опасным является момент пуска механизма, т.к. в покое вал опускается ("ложится") на вкладыш и при начале движения неизбежно сухое трение.
Следует заметить, что подъемная сила, обеспечивающая состояние жидкостного трения, возрастает обратно пропорционально квадрату относительного зазора, который, в свою очередь, определяется чистотой обработки шейки вала и подшипника. Поэтому для обеспечения надежной работы подшипников при жидкостном трения необходима приработка, то есть сглаживание гребешков на опорной поверхности вала и подшипника. Приработка новых и отремонтированных машин производится на режиме пониженной нагрузки. Во всех руководствах и инструкциях обязательно должен быть указан режим и время обкатки и приработки.
Для создания трения со смазочным материалом необходимо, чтобы в масляном слое возникало избыточное давление или от вращения вала (гидродинамическое), или от насоса (гидростатическое). Чаще применяют подшипники с гидродинамической смазкой (рис.14). При вращении цапфа 2 увлекает масло 1. В образовавшемся масляном клине создается избыточное давление, обеспечивающее разделение цапфы и подшипника слоем масла. 3 — эпюра распределения гидродинамического давления в масляном клине.
Рис. 14. Гидродинамическая смазка подшипника: 1 — масляный клин; 2— цапфа вала;
3 — эпюра распределения гидродинамического давления в масляном клине;
Fr — радиальная нагрузка на подшипник; h — толщина масляного клина
Теория показывает, что гидродинамическое давление может развиваться только в клиновом зазоре (см. эпюру на рис. 14). Толщина масляного слоя и зависит от угловой скорости и вязкости масла. Чем больше эти параметры, тем больше h. Но с увеличением радиальной нагрузки Fr на цапфу 2 толщина масляного слоя h уменьшается. При установившемся режиме работы толщина h масляного слоя должна быть больше суммы микронеровностей цапфы Rzl и вкладыша Rz2, (рис. 15).
Рис. 15. Масляный слой при установившемся режиме работы
Для подшипников с трением со смазочным материалом предварительно производят условный расчет. При этом обычно диаметр цапфы d, радиальная нагрузка Fr и угловая скорость должны быть известны. Для проверки выполнения условий жидкостного трения после выбора марки масла расчетным путем определяют радиальный зазор , толщину масляного слоя h и исследуют температурный режим подшипников. Гидродинамический расчет выполняют как проверочный.
Рекомендации по конструированию подшипников скольжения.
1. Вкладыши выполняют
без бортов, с одним и двумя
бортами. Борта служат для
2. Толщина стенки вкладыша зависит от диаметра d цапфы и материала. Для чугунных и бронзовых вкладышей мм. Размеры борта: b=1,25; h= 0,68.
3. Толщина слоя заливки баббита = 0,1...0,5 мм. С увеличением толщины слоя его прочность уменьшается.
4. Как отмечено выше l = (0,6.. .0,9)d, где l — длина вкладыша, а d — диаметр его отверстия. Чем больше длина вкладыша, тем опаснее перекос осей вала и вкладыша (возникновение кромочных давлений).
5. Вкладыши жестко закрепляют
в корпусе для предохранения
проворачивания и осевого
6. Регулирование зазора
в разъемных подшипниках
Список литературы:
Информация о работе Подшипники скольжения. Область их применения