Автор работы: Пользователь скрыл имя, 28 Февраля 2016 в 22:20, курсовая работа
В процессах эксплуатации промышленного оборудования образуются сточные воды, которые требуют специальной очистки перед сбросом в канализационные системы. Наиболее распространенными загрязняющими веществами в поверхностных водах являются нефтепродукты, фенолы, легкоокисляемые органические вещества, соединения меди, цинка, аммонийный и нитратный азот, лигнин, ксантогенаты, анилин, метилмеркаптан, формальдегид и др. Например, сточные воды заводов черной и цветной металлургии загрязнены большим количеством взвешенных минеральных веществ, содержат цветные металлы, железо, сульфаты, хлориды, смолы и масла, серную кислоту, железный купорос.
Введение
1. Условия приема промышленных сточных вод в канализацию населенных мест
2. Методы и оборудование для очистки технической воды и промышленных стоков
2.1 Механические методы очистки сточных вод
2.2 Химические и физико-химические методы очистки сточных вод
2.3 Биологический метод очистки сточных вод
Заключение
Список литературы
4. Возможность
предотвращения отложения
5. Возможность
нагрева или охлаждения
При создании мембранных модулей необходимо обеспечить их механическую прочность, герметичность и другие условия.
В настоящее время мембранные модули классифицируют по способу укладки мембран, по типу корпусов, по условиям демонтажа, по положению мембранных элементов и по режиму работы.
По способу укладки мембран используют разделительные элементы четырех типов [5]: 1) аппараты с плоскими мембранными элементами; 2) аппараты с трубчатыми элементами; 3) аппараты с элементами рулонного типа; 4) аппараты с мембранами в виде полых волокон.
Пленочные мембраны входят в состав разделительного элемента и размещаются на пористой опоре-дренаже с подложкой. Иногда подложка играет роль опоры, и в этом случае мембраны размещаются с обеих сторон подложки.
Аппарат с плоскими мембранными элементами фирмы ДДС, работающий с растворами при давлении Р = 2 МПа, рН – 14 и температуре до 100 °С рис.6. Аппарат представляет собой пакет мембранных элементов 9 эллиптической формы, находящийся между круглыми фланцами 11. Соосность элементов и их затяжка обеспечиваются направляющими штангами 8. Элементы состоят из пластин 7, покрытых с обеих сторон мембранами 6. Отверстия в пластинах и мембранах точно совмещаются и герметизируются со стороны входа разделяемого раствора в отверстие 10 проточным кольцом 5 и со стороны выхода из него – замковым кольцом 4. В проточных кольцах 5 выполнены прорези в радиальном направлении, обеспечивающие подачу раствора из отверстия одного элемента в межмембранный канал и отвод в другое отверстие следующего элемента. Для распределения разделяемого раствора по секциям одно из отверстий на соответствующих элементах перекрывают заглушкой 1. Пермеат отбирается из мембранных элементов по гибким капиллярным шлангам 2 и собирается в общий коллектор 3. Опорная пластина выполнена в виде двух склеенных пластмассовых дисков с разветвленной сетью внутренних каналов разного сечения для сбора пермеата. Недостатками аппаратов с эллиптическими элементами являются нерациональный раскрой мембран, опорных пластин, конструктивная и монтажная сложность.
Рис.6 Аппарат с плоскими мембранными элементами
По конструкциям и способам изготовления элементы делят на три типа: 1) с подачей разделяемых сред внутрь трубки; 2) с подачей разделяемых сред снаружи трубки; 3) с подачей разделяемых сред одновременно внутрь и снаружи трубки.
Основными достоинствами трубчатых мембранных элементов являются низкое гидравлическое сопротивление, равномерное движение потока раствора над мембраной с высокой скоростью, отсутствие застойных зон, возможность механической очистки мембранных элементов от осадка без разборки аппарата, малая металлоемкость при бескорпусном выполнении, компактность установки.
К недостаткам устройств относятся малая удельная поверхность мембран и повышенная точность при изготовлении дренажного каркаса.
Каркасом обычно являются перфорированные металлические трубки, пористые трубки из керамических, металлокерамических, пластмассовых и графитовых композиций и стеклопластиков.
Конструкция блока стеклопластиковых каркасов из семи трубок представлена на рис.7. Для уменьшения расхода материалов наружная поверхность труб может быть выполнена в виде шестигранника. Это также придает жесткость корпусу.
Аппараты с элементами рулонного типа имеют высокую удельную поверхность, малую металлоемкость, удобны при монтаже и демонтаже элементов. К недостаткам элементов можно отнести высокое гидравлическое сопротивление межмембранных каналов и сложность монтажа.
Рис.7 Конструкция блока
Аппараты могут содержать мембранные элементы с несколькими пакетами и одной пермеатотводящей трубкой, совместно навитые рулонные мембранные элементы и рулонные мембранные элементы с несколькими пермеатотводящими трубками или с каналами для сбора пермеата.
В этих аппаратах пермеат поступает под давлением в напорный канал элемента параллельно оси трубки.
Аппараты с мембранами в виде полых волокон благодаря развитой удельной проницаемости и удельной поверхности нашли широкое применение при разделении сред обратным осмосом и ультрафильтрацией.
Полые волокна диаметром 45–900 мкм и толщиной стенки 10–50 мкм применяют в обратном осмосе, а диаметром 200–2000 мкм и толщиной 50–200 мкм – при ультрафильтрации.
В аппарате с параллельным расположением полых волокон волокна собраны в один пучок спирально навитой нитью [2] (рис.8). Она же обеспечивает зазор между отдельными волокнами. Раствор может подаваться как вдоль поверхности полых волокон, так и по капиллярным каналам этих волокон.
Рис.8 Аппарат с параллельными волокнами
Недостатком таких аппаратов является малая интенсивность перемешивания раствора, жесткое крепление полых волокон в трубных решетках и, следовательно, трудность обработки растворов, содержащих взвешенные частицы.
При непрерывном процессе раствор проходит мембранный аппарат только раз и выходит из установки с заданной концентрацией. Применяют также схемы проточно-циркуляционного типа, где часть концентрата возвращается в исходный раствор, а остальная часть с требуемой концентрацией выводится из системы потребителю.
Из схем соединения модулей одноступенчатые соединения аппаратов используют при разделении низкоконцентрированных растворов, а многоступенчатые – при очистке более концентрированных растворов. В этом случае исходным раствором для следующей ступени служит фильтрат предыдущей ступени, которая работает при более низком давлении.
Используемые в модулях мембраны должны обладать высокой разделяющей способностью, высокой удельной производительностью, прочностью и химической стойкостью к действию очищаемых сред. Из большого числа типов мембран можно выделить полимерные мембраны и мембраны с жесткой структурой.
К полимерным относятся мембраны из ароматических полиамидов «Владипор» типа МГА-90, МГА-100 для обратного осмоса с солесодержнием до 20 кг/м3, предназначенные для очистки сточных вод и промышленных стоков. Мембраны типа УАМ-80, УАМ-500 используют для разделения водомасляных эмульсий, пигментных красителей и др. методом ультрафильтрации.
Этилцеллюлозные мембраны типа УЭМ-200, УЭМ-500 предназначены для концентрирования, разделения и очистки различных веществ в кислых и особенно щелочных средах. Удельная производительность по воде 33–300 см3 /, средний диаметр пор х10 3 м.
Мембраны на основе ароматических полиамидов «Владипор» типа МГМ-80, МГП-100 рекомендуются для разделения, концентрирования агрессивных сред с рН 1–12, содержащих большинство органических растворителей, и выдерживают в водных средах температуру до 150 °С.
Термическое сжигание. Термическое сжигание применяют для уничтожения высококонцентрированных сточных вод, содержащих минеральные или органические элементы. По этому методу сточные воды вводят в печь сжигания и испаряют при температуре 900–1000 °С. Органические примеси сгорают до продуктов полного сгорания С02, Н20, N02.
2.3 Биологический метод очистки сточных вод
В основе биологической очистки сточных вод от органических веществ лежат три взаимосвязанных процесса: синтез протоплазмы клеток микроорганизмов, окисление органических загрязнений и окисление продуктов метаболизма клеток [6]. Для проведения таких процессов требуется участие ферментов. Происходящее при этом аэробное окисление содержащегося в органических веществах углерода до С02 и H2, до Н20 характеризуется расходом кислорода, то есть биологическим потреблением кислорода.
Характеристикой глубины разложения примесей в водостоке является биохимический показатель, равный отношению ВПК к ХПК.
Под ХПК в отличие от ВПК понимают количество кислорода, теоретически необходимое для полного превращения органических веществ в С02, Н20, а также в соль аммония и серную кислоту, если они содержат азот и серу. Молекулярный кислород, входящий в состав молекул веществ, идет на окисление этих веществ.
При биохимическом окислении органических веществ требуется меньше кислорода, чем при химическом окислении с той же эффективностью очистки.
В биологических фильтрах сточные воды очищаются микроорганизмами активного ила или биопленки, образующими биологически активную массу.
Производительность установки и количество избыточного ила на единицу объема сточной воды оценивают по окислительной мощности и приросту ила.
Окислительную мощность рассчитывают по формуле:
где ΔБПК = БПКисх – БПКоч – разность между БПК исходной и очищенной воды, г/м3; V – расход сточных вод, м3/ч; Va – рабочий объем аэротенка, м3; τ – время аэрации, ч.
Прирост ила из-за сложного характера взаимоотношений бактерий определяют по приближенной зависимости
где Сн – концентрация взвешенных веществ, поступающих в аэротенк, г/м; Кэ – экономический коэффициент; Δm – количество органических примесей, удаленных в аэротенках, соответственно в массовых единицах и единицах БПК, г/м3; У – удельный прирост ила, г/г БПК.
Анаэробные схемы применяют для очистки сточных вод концентрацией 6–20 г/дм3, для концентрирования минеральных солей 30 г/дм3 и для брожения осадков и избыточного ила.
По анаэробной схеме стоки, пройдя усреднитель 1, подаются в анаэробный восстановитель 2, где взаимодействуют с анаэробным илом. Затем смесь насосами 4 подается во флотатор 5, из которого иловая вода вместе с бытовыми водами поступает в аэротенк 6, а пенный продукт – в метантенк 3 на стабилизацию. Выходящая из аэротенка 6 смесь насосами 7 подается во флотатор 8, из которого аэробный активный ил возвращается на вход схемы. Часть ила возвращается в аэротенк 6, а избыточная часть в метантенк 3. Биологически очищенная вода доочищается на фильтрах 9 и 10, после чего сбрасывается в водоем 12 или подается насосами на повторное использование.
Стоки, очищаемые биологическими методами, должны отвечать следующим требованиям [2]:
1. Органические
вещества, входящие в стоки, должны
быть способны к
2. Их концентрация, выраженная через ВПК, не должна превышать 500 мг/дм3 при очистке на биофильтрах и 1000 мг/дм3 – при очистке в аэротенках-смесителях.
3. Концентрация
ядовитых органических и
4. Количество
механических примесей не
5. Водородный потенциал среды рН должен быть 6,5–8,5.
6. Сточные воды
должны содержать биогенные
7. Общее количество
растворенных солей должно
8. Стоки не
должны содержать плавающих
9. Температура сточных вод – от 6–35 до 50–60 °С.
Заключение
Мы изучили классификацию методов очищения сточных вод на производстве, выделили преимущества и недостатки методов очистки. Рассмотрели, какие загрязнения возможны и какой метод лучше использовать при том или ином загрязнении.
Список литературы
1. Промышленная экология: Учеб. пос. / Под ред. В.В. Денисова. – М.: ИКЦ "МарТ"; Ростов н/Д: Издат. Центр "МарТ", 2007. – 720 с. (Серия "Учебный курс").
2. Техника и технология защиты воздушной среды: Уч.пособие для ВУЗов /В.В.Юшин, В.М. Попов, П.П. Кукин и др. – М.: Высш.школа, 2005. – 391 с.
3. Оборудование,
сооружения, основы проектирования
химико-технологических
4. Мазур И.И., Молдаванов О.И. Курс инженерной экологии: Учеб. для ВУЗов / Под ред. И.И. Мазура – М.: Высш.шк.., 1999. – 447 с.
5. Лозановская И.Н., Орлов Д.С., Садовникова Л.К. Экология и охрана биосферы при химическом загрязнении. М.: Высшая школа, 1998. 287 с.
6. Очистка сточных вод: Пер.с англ. / Хенце М., Армоэс П., Ля-Кур-Янсен Й. и др. – М.: Мир, 2004. – 480 с.
Информация о работе Оборудования для очистки промышленных стоков