Автор работы: Пользователь скрыл имя, 16 Ноября 2011 в 12:58, курсовая работа
При выборе источников энергии следует иметь в виду их качество, оценивающееся долей энергии, которая может быть превращена в механическую работу. Возобновляемые источники энергии по их качеству условно делятся на три группы:
— источники механической энергии довольно высокого качества: около 30% - ветроустановки, 60% - гидроустановки, 75% - волновые и приливные станции;
— источники тепловой энергии с качеством не более 35% - прямое или рассеянное солнечное излучение, биотопливо;
— источники энергии, использующие фотосинтез и фотоэлектрические явления, имеют различное качество на разных частотах излучения; в среднем КПД (коэффициент полезного действия) фотопреобразователей составляет примерно 15%.
ВВЕДЕНИЕ 3
1. Использование солнечной энергии в Республике Беларусь 4
1.2. Тепловые гелиоустановки. 5
2. Биоэнергетика 6
2.1.Общие сведения 6
2.2. Биомасса - аккумулятор солнечной энергии 7
2.3. Фотосинтез на службе энергетики 10
2.4. Время и место получать энергию из когенерационных установок. 13
3. Гидроэнергетика в Беларуси 15
3.1.Общие сведения 15
3.2. Описание работы гидроэлектростанций 16
3.3. Гидроэлектростанции и жизненная среда 17
4.Ветроэнергетика 19
4.1. Общие сведения 19
4.2. Классификация и принцип действия ветроэлектрических установок 21
4.3. Ветряные мельницы на службе человека 23
4.4. Как хранить энергию ветра? 24
4.5. Перспективы использования энергии ветра в агропромышленном комплексе Республики Беларусь 26
5.Сравнение возобновляемых топливно-энергетических ресурсов 29
Заключение 31
Приложение 33
Литература 35
Мощность (кВт), развиваемая на валу ветроколеса, приближенно можно определить по формуле
Рвк
= 3,85∙10-4∙р∙ D2
∙υвЗ∙Кисп'
где р — плотность воздуха, кг/м3; υв — скорость ветра, м/с; D — диаметр ветроколеса, м; Кисп — коэффициент использования энергии ветра.
Предельное значение Кисп для быстроходного идеального ветроколеса определено русским ученым Н. Е. Жуковским и равно 0,593. Из формулы видно, что Рвк пропорциональна υв3, что и определяет необходимость регулирования скорости вращения ветроколеса для обеспечения постоянства развиваемой мощности.
Тихоходное ветроколесо конструктивно может быть выполнено в виде лопастных колес, с числом лопастей от 6 и более. Кроме того, имеются разработки тихоходных ветродвигателей карусельного, барабанного, парусного типов и др. Значение Кисп для многолопасных ветроколес не превышает 0,38, для карусельного ветродвигателя — меньше 0,18. Особенностью всех тихоходных ветродвигателей является то, что они при небольшой скорости вращения развивают большой вращательный момент. Регулирование частоты вращения и ограничение мощности достигается путем поворота оси вращения ветроколеса от направления ветра, уменьшением площади рабочих поверхностей ветроколеса и др.
В зависимости от ориентации оси вращения рабочего органа (ветроколеса, ротора и др.) ветродвигатели делятся на горизонтально- и вертикально-осевые.
Горизонтально-осевые — это такие, у которых ось вращения ветроколеса расположена вдоль направления ветрового потока. Для нормальной работы такие ветродвигатели требуют установки плоскости вращения ветроколеса перпендикулярно вектору скорости ветра.
Вертикально-осевые имеют ось вращения рабочего органа, расположенную вертикально относительно горизонтальной плоскости. Для таких устройств не требуется установка на ветер.
Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.
Сооружаются ветроэлектрические станции, преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину — генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении. В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад.
Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие — на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями. На башне высотой 30,5 м укреплен генератор в поворотном обтекаемом корпусе; на валу генератора сидит пропеллер с двумя алюминиевыми лопастями длиной 19 м и весом 900 кг. Агрегат начинает работать при скорости ветра 13 км/ч, а наибольшей производительности (100 кВт) достигает при 29 км/ч. Максимальная скорость вращения пропеллера составляет 40 об/мин.
Так как наша страна находится в умеренной ветровой зоне, то нам особое внимание надо уделить на углы поворота лопасти, от которого зависит подача ветра в генератор, при планировании ВЭУ. Угол наклона лопастей по отношению к ветру регулируют за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.
Конструкция лопастных ВЭУ роторной схемы обеспечивает максимальную скорость вращения при запуске и ее автоматическое саморегулирование в процессе работы. С увеличением нагрузки скорость вращения ветроколеса уменьшается, а вращающий момент возрастает. По данному типу спроектирована одна из ВЭС в Беларуси (ВЭУ в Мядельском районе мощностью 250 кВт.
Высота мачты имеет существенное значение для ветроэлектрических установок. Уже на высоте 9 м скорость ветра, как правило, на 15—25% больше, чем в 1,5 м от земли, а даже небольшой прирост средней силы ветра позволяет получить от станции намного больше электроэнергии.
По оценке белорусских ученых, существующие способы преобразования ветроэнергии в электрическую с помощью традиционных лопастных ветроэнергетических установок (ВЭУ) в наших условиях пока экономически неоправданны. Во-первых, из-за высокой пусковой скорости ветра (4-5 м/сек), высокой номинальной скорости (8-15 м/сек) и небольшой годовой производительности в условиях слабых континентальных ветров, характерных для Беларуси — 3-5 м/сек; во-вторых, стоимость ВЭУ составляет $1000-$1500 на кВт установленной мощности. Поэтому будущее ветроэлектрических станций зависит в первую очередь от затрат на их сооружение.
При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра?
Существует несколько способов сохранения энергии:
Решающим фактором, который определит, значителен ли будет вклад ветровой энергии в удовлетворение потребностей человечества в энергии, является возможность создания соответствующей технологии. Он связан в основном с национальной энергетической политикой, затратами и приемлемостью таких установок для населения.
Разрабатываются
также ветроэнергетические
В 1999 году были построены ветроэлектроустановки на ветреной возвышенности в деревне Дружная (Мядельский район). Эта немецкая ветроустановка мощностью в 250 кВт является первой в Беларуси. Вторая ветроэлектроустановка мощностью в 600 кВт была построена осенью 2001 года; 18-го мая 2002 года состоялось ее торжественное открытие, за 2007 год ими выработано 1,58 млн. кВт∙ч электроэнергии. Коэффициент использования данных установок 25%, что является нормальным показателем.
Необходимо отметить, что и сама деревня Дружная является уникальным полигоном экологических технологий строительства. Среди трех десятков построенных здесь комфортных экодомов есть дома из глиносоломенных смесей, дома из щепы с глиной, здесь же находится первое в СНГ строение из соломенных блоков. Самый мощный в РБ фотоэлектрический коллектор находится тоже здесь.
Подобную, но меньшую площадку планируют создать в Минске, начав со строительства в 2008 году 2 энергопассивных экодомов, которым не нужны системы отопления за счет супертеплоизоляции стен соломенными блоками и использования солнечных коллекторов для сезонного аккумулирования тепла.
Территория республики Беларусь находится в умеренной ветровой зоне. Стабильность скорости ветра составляет 4-5 м/с и соответствует нижнему пределу устойчивой работы отечественных ВЭУ. Это позволяет использовать лишь 1,5-2,5% ветровой энергии. К зонам, благоприятным для развития ветроэнергетики, со среднегодовой скоростью ветров выше 5-5,% м/с, относится 20% территории страны. Наиболее эффективно можно применять ВЭУ на возвышенностях большей части севера и северо-запада Беларуси и в центральной части Минской области, включая прилегающие к ней районы с запада.
В ближайшее время развитие использование энергии ветра получит новый импульс. К 2010 году Минэнерго планирует ввести в эксплуатацию ветроэнергетические установки суммарной мощностью не менее 15-20 МВт. В текущем году, согласно плану, планируется также построить ветроустановку в РУП «Гродноэнерго» и ОАО «Гроднохимволокно».
В
Государственной программе
В Беларуси в соответствии с проектом до 2014 года предлагается ввести всего 10 ветроустановок с общей мощностью 15 МВт. Они позволят суммарно вырабатывать около 44 млн. кВт∙ч электроэнергии в год, окупаемость таких проектов не превысит 14 лет. Согласно расчетам экспертов, ветроустановка мощностью 1 МВт в течение 20 лет позволяет заместить примерно 29 тыс. т угля. Кроме того, сокращаются выбросы углекислого газа и других веществ в атмосферу. К тому же, продажа на углеродном рынке объемов сокращения выбросов парниковых газов от предполагаемого ветропарка может принести дополнительный доход в 500 тыс. евро за 5 лет.
Учитывая то, что быстроходные ВЭУ в нашей стране неэффективны, так как для них требуется минимальная расчетная скорость ветра не менее 10 м/с; а тихоходные ВЭУ менее технологичны в производстве и сложнее в эксплуатации, в Беларуси разрабатываются ВЭУ, работающие на основе использования эффекта Магнуса, когда в качестве аэродинамических элементов используются не лопастные, а вращающиеся усеченные конусы специальной формы (роторы), подъемная сила в которых многократно (в 6-8 раз) превосходит подъемную силу в лопастях. Главное их преимущество состоит в том, что они могут эффективно работать при скоростях ветра, характерных для условий Беларуси.
Взаимодействие цилиндрической лопасти с ветровым потоком показано на рис.7.
Рис.7. Взаимодействие вращающейся лопасти с ветровым потоком: υв — вектор скорости ветра; υ1' υ2 — относительные скорости обтекания; ωл — угловая скорость вращения лопасти вокруг своей оси; Fм — сила Магнуса.
Сила Магнуса (Fм), направленная в сторону вращения ветроколеса, указанного на рисунке, возникает из-за разности давлений обтекающего эту лопасть ветрового потока. При вращении цилиндрической лопасти с угловой частотой ωл относительная скорость обтекания цилиндра воздушным потоком υ' будет меньше аналогичной скорости υ2, что и является первопричиной возникновения силы Fм.
В нашей республике ведутся работы по созданию ВЭУ. Отличительная особенность: они вступают в работу при скорости ветра υ0 = 3 м/с. Коэффициент использования энергии ветра ветроколесом с цилиндрическими лопастями близок к 0,5. Регулирование скорости вращения ветроколеса осуществляется путем изменения угловой скорости вращения лопастей ωл.