Электрокерамика

Автор работы: Пользователь скрыл имя, 05 Декабря 2010 в 00:07, Не определен

Описание работы

1. Классификация и основные свойства электрокерамики.
2. Основные сырьевые материалы для производства электрокерамики.
3. Технология производства электрокерамических материалов и изделий.
4. Механическая обработка и металлизация керамических изделий.
Заключение.
Список использованных источников.

Файлы: 1 файл

электрокерамика.docx

— 315.25 Кб (Скачать файл)

  В зависимости от месторождения кварцевые пески имеют примеси (Fe2O3, TiO2, A12O3, CaO, MgO и др.), наиболее нежелательные из которых Fe2O3 и ТiO2 (допустимое содержание не более 0,15 %), СаО и MgO (не более 0,2 %).

  Полевые шпаты представляют собой безводные алюмосиликаты, содержащие щелочные (Na+, К+) и щелочно-земельные (Са2+) катионы. Основные виды применяемых в керамическом производстве полевых шпатов: калиевый (микроклин) с приблизительной формулой К2О•А12O3•6SiO2, натриевый (альбит) Na2O•Al2O3•6SiO2, кальциевый (анортит) СаО•А12О3•2SiO2 и бариевый (цельзиан) ВаО•А12О3•2SiO2. Полевые шпаты всегда содержат примеси оксидов железа, магния, кальция и др.

  Лучшим  для изоляционной керамики полевым шпатом является микроклин. Из-за повышенного содержания Na2O в полевом шпате снижаются температура обжига, вязкость стеклофазы керамики и существенно ухудшаются его электрофизические свойства. Чем больше соотношение К2О и Na2O в полевом шпате, тем лучше свойства керамики.

  В связи с ограниченностью запасов  высококачественного полевого шпата для производства высоковольтных изоляторов используют пегматиты.

   Пегматиты представляют собой крупнозернистые кристаллические породы — смесь полевого шпата с кварцем.

   Глинозем — безводный оксид алюминия Al2О3 — представляет собой порошок со средними размерами сферических гранул 50— 200 мкм. Глинозем широко применяется как основной компонент электрофарфора и ультрафарфора (на основе корунда) и в качестве самостоятельного материала для изготовления высоковольтных, высокочастотных изоляторов, конденсаторов, деталей вакуум-плотных узлов (корпусов предохранителей, колб натриевых ламп, корпусов полупроводниковых вентилей, обтекателей антенн, плат для интегральных схем и др.).

   Безводный оксид алюминия существует в нескольких кристаллических модификациях, из которых  самой устойчивой является α-Аl2О3 (корунд). Эта модификация характеризуется малым tgδ≈2•10-4, высоким ρ≈1014 Ом•м, высокой теплопроводностью и стойкостью к термоударам,   наибольшей   плотностью   (3999 кг/м3).

  Две другие модификации: γ-Аl2О3 и β-Аl2О3, последняя из которых представляет собой соединение глинозема со щелочными и щелочноземельными оксидами, имеют меньшую плотность (соответственно 3600 и 3300—3400 кг/м3) и более высокие значения  tgδ (≈50•10-4 и 1000•10-4). Технический глинозем представляет собой в основном γ-Аl2О3 с частичным содержанием гидратов глинозема.

  При нагреве γ-Аl2О3 переходит в α-Аl2О3 с уменьшением объема на 14,3 процента. Для уменьшения усадки керамики при обжиге технический глинозем предварительно обжигают при температуре 1450—1550 °С.

  Спектрально чистый корунд плавится при 2050 °С, а изделия из него при небольшой механической нагрузке могут быть использованы даже при температуре до 1800°С.

  Для производства электроизоляционной  керамики применяются технический глинозем (шесть сортов), электроплавленный корунд и глинозем особой чистоты в зависимости от назначения керамики.

  Кальцит — карбонат кальция СаСО3, представляющий собой плотный кристаллический агрегат, называется мрамором, а при тонкодисперсной структуре — мелом. При нагреве СаСО3 разлагается с выделением СО2 согласно реакции СаСО3 → СаО + СО2↑.  Скорость разложения зависит от скорости подъема температуры и от давления воздуха. При нормальных условиях температура разложения составляет порядка 900 °С.

  Для производства электроизоляционной  керамики в основном используют мел Белгородского месторождения с содержанием СаСО3 не менее 98 %.

  В керамике карбонат кальция используется как основной компонент кристаллических фаз титанатов, станнатов и цирконатов кальция, анортита, волластонита, а также входит в состав стеклофазы различных электрокерамик и глазурей.

  Ашарит — борат магния 2MgO•B2O3•H2O является стеклообразующим оксидом. Его твердость по Моосу — 4. Он добавляется в керамические массы в количестве 2—3 %. Ашарит в состав ашаритового фарфора вводится в виде предварительно приготовленного спека из глинозема, ашарита и полевого шпата в количестве до 60 % массы, для улучшения электроизоляционных свойств фарфора.

  Циркон ZrO2•SiO2 (цирконовая руда) имеет твердость 7—8; плотность его около 4700 кг/м3. Руду обогащают, в результате полученный циркон содержит ZrO2 не менее 60 % и Fe2O3 не более 0,15 %. Циркон используется в качестве основного компонента в стойкой к термоударам керамике и в виде части кристаллической фазы цирконового фарфора. В последнем случае циркон вводится в состав фарфора вместо кварца, кристаллическая фаза керамики в таком случае представлена цирконом и муллитом.

  1. Технология производства электрокерамических материалов и изделий.

  Для каждого конкретного случая процесс будет несколько видоизменяться, однако можно отметить общие для большинства случаев основные этапы производства: приготовление формовочной массы; оформление заготовок изделий; сушка, глазурование и обжиг изделий. В некоторых случаях обожженные изделия могут подвергаться дополнительной механической обработке.

  Приготовление формовочной массы. Керамическая формовочная масса характеризуется размерами и распределением частиц; от этого зависят плотность упаковки, влагосодержание и прочность заготовки до обжига, технологические свойства материала, а также характеристики обожженных керамических изделий.

  Измельчение компонентов является одним из основных процессов при приготовлении формовочных масс. Как правило, твердые минеральные компоненты массы сначала подвергают грубому измельчению в щековых дробилках и на бегунах, затем просеивают на виброситах для получения заданной фракции, далее производят мокрый или сухой тонкий помол на ротационных шаровых мельницах периодического или непрерывного действия. Сверхтонкий помол производят в струйных мельницах с использованием сжатого воздуха.

  Степень измельчения отдельных компонентов массы зависит от требований, предъявляемых к материалу, размеров изделий и применяемых способов оформления, сушки и обжига. При измельчении обычно происходит смешение компонентов массы. Степень измельчения проверяют ситовым и микроскопическим анализами, а в лабораторных условиях — седиментационным. Для удаления частиц железа измельченную массу пропускают через магнитный сепаратор.

  Обезвоживание водного шликера после мокрого помола производится на фильтр-прессе под давлением 0,8—3 МПа. Масса, остающаяся между пластинами фильтра в виде коржей, в зависимости от назначения проходит различную обработку. При изготовлении масс для пластичной формовки коржи поступают для переминки в вакуум-прессы, с помощью которых обеспечивается хорошее извлечение воздуха, окончательная переминка массы и выдавливание ее через мундштук, придающий заготовкам определенный профиль. Заготовки используются для формовки изделий пластичными методами.

  Для приготовления водного  литейного шликера коржи распускаются в шликерных мешалках в воде с добавкой электролита и доводятся до нужной влажности. После вакуумирования шликер подается на литье. Безглинистые массы или массы с небольшим содержанием глинистых веществ (например, конденсаторные массы с содержанием около 3 % бентонита) не подвергают обезвоживанию на фильтр-прессе, а используют как литейный шликер после вакуумировки.

  При приготовлении масс, предназначенных  для изготовления изделий методом  прессования, коржи с добавкой отходов формовочной массы подвергают сушке и дроблению. Затем масса просеивается, пропускается через магнитный сепаратор, вводятся связующие вещества, производится тщательное перемешивание и приготовляются гранулированные (гранулы размером 0,5—2 мм отделяют от пыли на соответствующих ситах) пресс-порошки.

  В качестве связующего и пластифицирующего вещества в глинистых массах служит вода, а в безглинистых массах — растворы органических веществ, например раствор поливинилового спирта, бакелитовой смолы, воскообразные вещества — парафин, церезин и др.

  Для приготовления гранулированного пресс-порошка широко применяют распылительные сушилки. При этом водный шликер с влажностью 35—50 % распыляют форсункой или вращающимся диском в башенной сушилке для подсушки и получения гранул заданной влажности. Шарообразные гранулы (размерами преимущественно 0,3— 0,5 мм) имеют более высокую текучесть, чем порошок, получаемый измельчением сухой массы в мельницах ударного действия.

  При применении распылительных сушилок  достигается существенная экономия за счет исключения из производственного цикла ряда операций, снижения трудовых и эксплуатационных затрат.

  При приготовлении шликера для горячего литья в металлические формы под давлением масса предварительно синтезируется, дробится, измельчается в барабанных или вибрационных мельницах до заданной дисперсности (обычно удельная поверхность 350—800 м2/кг). Затем вводится парафин с добавкой олеиновой кислоты в обогреваемую до 70—80 °С лопастную, пропеллерную или иную мешалку.

  Ориентировочное количество связующего, состоящего из 95—97 % парафина и 3—5 % олеиновой кислоты, в шликерах составляет около 10 —15%.

  Перед заливкой в формы горячий шликер вакуумируют в аппаратах различной конструкции.

  Оформление  заготовок изделий. В зависимости от состава, технологических особенностей приготовления массы, конфигурации, габаритных размеров и масштаба производства изделий в основном применяются следующие способы изготовления заготовок: пластичное формование, прессование из пресс-порошков, литье водного шликера в гипсовые формы, горячее литье под давлением в металлические формы и высокотемпературное прессование.

  Пластичное  формование относится к важнейшим методам оформления электротехнических изделий. Этот метод в основном применяется при массовом производстве различных фарфоровых изоляторов, иногда для изготовления специальных изделий, стеатитовых, кордиеритовых, конденсаторных, глиноземистых и др., в том числе и из масс, не содержащих глины, но пластифицированных органическими связующими.

  При изготовлении изделий пластичным формованием  керамическую массу подвергают тщательной обработке, многократной перемешке в ленточном прессе, вакуумированию.

  Сплошные  толстостенные трубчатые керамические изделия оформляются из пластичной массы с помощью мощных вакуум-прессов. Окончательная конфигурация заготовок достигается пластичным формованием во вращающихся гипсовых или металлических формах и механической обработкой резанием. Этот метод применяется при изготовлении крупногабаритных высоковольтных изоляторов и подобных им изделий. Трубки, оси, стержни с одним или несколькими каналами и другие изделия с постоянным поперечным сечением изготавливают из пластичной массы способом протяжки через фильерные мундштуки на поршневых винтовых, гидравлических или шнековых прессах. Этот способ является основным для оформления заготовок различной конфигурации при изготовлении конденсаторов, резисторов и других изделий.

  Изделия, не имеющие форму тел вращения, при небольших выпусках изготовляются  методом ручной лепки в гипсовых формах.

  Прессование из пресс-порошков является одним из распространенных и производительных способов изготовления полностью оформленных изделий заданной конфигурации или заготовок для последующей механической обработки изделий.

  В зависимости от конфигурации прессуемых изделий, степени пластичности пресс-порошка и требований к изделиям прессование можно осуществлять различными способами. Так, широкий ассортимент установочных деталей из стеатита и форстерита, высоковольтные конденсаторы и другие изделия изготовляются сухим прессованием с применением малопластичных пресс-порошков с неводными органическими (парафин, смесь парафина с керосином и др.) или гидроорганическими (водный раствор поливинилового спирта) связующими. Для малопластичных пресс-порошков в СССР используют 2—5 %-ный водный раствор поливинилового спирта или 6—14 %-ный раствор парафина в бензине или керосине.

  Штампование применяется главным образом для установочных деталей различной конфигурации из высокопластичных материалов с большим содержанием глин (фарфора, радиофарфора, ультрафарфора и т. д.) и добавкой гидроорганических пластификаторов.

  Изостатическое  прессование основано на всестороннем обжатии засыпанного в эластичную форму пресс-порошка или предварительно оформленной каким-либо способом заготовки жидкостью или сжатым газом. Изостатическое прессование в резиновой форме путем приложения гидростатического давления жидкости обычно называют гидростатическим прессованием. Этот способ применяется для оформления заготовок некоторых видов изоляторов, пьезокерамических элементов и других подобных изделий. Он обеспечивает получение плотных и однородных заготовок.

Информация о работе Электрокерамика