Автор работы: Пользователь скрыл имя, 15 Марта 2011 в 20:08, лекция
Характеристика важная для оценки качества материалов, применяемых для защитных покровов ( шланги кабелей, опрессовка конденсаторов, компаундные заливки, лаковые покрытия деталей ) - влагопроницаемость электроизоляционных материалов, т.е способность их пропускать сквозь себя пары воды.
Электроизоляционные материалы.
Характеристика важная для оценки качества материалов, применяемых для защитных покровов ( шланги кабелей, опрессовка конденсаторов, компаундные заливки, лаковые покрытия деталей ) - влагопроницаемость электроизоляционных материалов, т.е способность их пропускать сквозь себя пары воды.
Благодаря наличию мельчайшей пористости большинство материалов обладает поддающейся измерению влагопроницаемостью. Только для стёкол, хорошо обожжённой керамики и металлов влагопроницаемость почти равна нулю.
Можно определить количество влаги m ( в микро граммах ), проходящее за время t через участок поверхности S [см 2 ] слоя изоляционного материала толщиной h [см] под действием разности давлений водяных паров р 1 и р 2 [ мм. рт . ст. ] с двух сторон слоя, по формуле:
m=П
Это уравнение аналогично уравнению для прохождения через тело электрического тока; разность давлений (р 1 - р 2 ) аналогична разности потенциалов, m/t - величине тока, а h/ПS - сопротивлению тела; коэффициент П, аналогичный удельной объёмной проводимости, есть влагопроницаемость данного материала.
Влагопроницаемость для различных материалов изменяется в широких пределах. Например: для парафина значение П равно 0,0007; для полистирола - 0,03; для триацетата целлюлозы - около 1 мкг /(см- ч - мм рт. ст. ).
Чтобы уменьшить влагопроницаемость пористых изоляционных материалов широко применяется их пропитка . Необходимо помнить, что пропитка волокнистых целлюлозных материалов и других пористых органических диэлектриков даёт лишь замедление увлажнения материала, не влияя на величину r после длительного воздействия влажности. Это связано с тем, что молекулы пропиточных веществ, имеющие весьма большие размеры по сравнению с размерами молекул воды, не в состоянии создать полную непроницаемость пор материала для влаги, а в наиболее мелкие поры пропитываемого материала они вообще не могут проникнуть.
В тропических условиях, при длительном использовании электроаппаратуры, особенно, на органических диэлектриках наблюдается развитие плесени. Плесень ухудшает: удельное поверхностное сопротивление диэлектриков, приводит к росту потерь и ухудшению механической прочности изоляции, вызывает коррозию соприкасающихся с ней металлических частей.
Электроизоляционные
материалы и различные
С целью повышения плесенеустойчивости органической электрической изоляции в её состав вводят добавки фунгицидов , т.е. веществ, ядовитых для плесневых грибков и задерживающих их развитие, или же покрывают изоляцию лаком, содержащим фунгициды. Имеется большое число рецептур фунгицидов, пригодных для введения в те или иные электроизоляционные материалы. К числу сильнодействующих фунгицидов принадлежат, в частности, некоторые органические соединения, содержащие азот, хлор, ртуть .
Наиболее стойкими к образованию плесени являются неорганические диэлектрики - керамика, стёкла, слюда, кремнийорганические материалы и некоторые из органических, например эпоксидные смолы, фторопласт - 4, полиэтилен, полистирол.
Наиболее уязвимы для развития плесени целлюлозные материалы, в том числе и пропитанные ( гетинакс , текстолит ), канифоль, масляные лаки и др.
В некоторых
случаях для
Электроизоляционные масла.
Трансформаторное масло, из всех жидких электроизоляционных материалов находит наибольшее применение в электротехнике, им заливают силовые трансформаторы.
Его применяют: во-первых, для заполнения пор в волокнистой изоляции, а также промежутков между проводами обмоток и между обмотками и баком трансформатора, значительно повышая электрическую прочность изоляции;
во-вторых, оно улучшает отвод теплоты, выделяемой за счёт потерь в обмотках и сердечнике трансформатора. Лишь некоторые силовые и измерительные трансформаторы выполняются без заливки маслом ( “ сухие трансформаторы ” );
в-третьих для изготовления масляных выключателей высокого напряжения. В этих аппаратах разрыв электрической дуги между расходящимися контактами выключателя происходит в масле или в находящихся под повышенным давлением газах, выделяемых маслом под действием высокой температуры дуги; это способствует охлаждению канала дуги и быстрому её гашению.
в-четвертых для заливки маслонаполненных вводов, некоторых типов реакторов, реостатов и других электрических аппаратов.
Трансформаторное масло - это жидкость от почти бесцветной до тёмно - жёлтого цвета, по химическому составу представляющая собой смесь различных углеводородов. Трансформаторное масло - горючая жидкость.
Трансформаторные
масла получают из нефти посредством
её ступенчатой перегонки с
Электрическая прочность масла - величина, чрезвычайно чувствительная к его увлажнению. Незначительная примесь воды в масле резко снижает его электрическую прочность. Это объясняется тем, что воды ( около 80 ) значительно выше, чем масла (чистого масла около 2,2 ). Под действием сил электрического поля капельки эмульгированной в масле воды втягиваются в места, где напряжённость электрического поля особенно велика и где, собственно и начинается развитие пробоя. Ещё более резко понижается электрическая прочность масла, если в нём, кроме воды содержатся волокнистые примеси. Волокна бумаги, хлопчатобумажной пряжи, легко впитывают в себя влагу из масла, причём значительно возрастает их e r. Под действием сил поля увлажнённые волокна не только втягиваются в места, где поле сильнее, но и располагаются по направлению силовых линий, что весьма облегчает пробой масла.
Вода легко может попасть в масло при его перевозке, хранении, переливки в недостаточно просушенную тару и т.п., поэтому для сушки масла имеется несколько способов : пропускание под давлением сквозь фильтровальную бумагу в специальных установках - фильтропрессах; воздействие на масло центробежной силы в центрифуге, причём вода, имеющая плотность больше, чем у масла, отжимается с периферии сосуда и отделяется от масла; обработка адсорбентами; распыление нагретого масла в камере, заполненной азотом и т.п. При сушке электрическая плотность увлажнённого масла восстанавливается.
Конденсаторное масло служит для пропитки бумажных конденсаторов, в особенности силовых, предназначенных для компенсации индуктивного фазового сдвига. При пропитке бумажного диэлектрика повышаются как его , так и Е ПР ; то и другое даёт возможность уменьшить габаритные размеры, массу и стоимость конденсатора при заданном рабочем напряжении, частоте и ёмкости.
Нефтяное конденсаторное масло имеет плотность 0,86 - 0,89 Мг/м 3 , температуру застывания минус 45 0 С, e r =2,1 ¸ 2,3 и tg d 0,002 ( при частоте 1 кГц ).
Вазелиновое конденсаторное масло по плотности и электрическим свойствам близко к нефтяному, но имеет более высокую температуру застывания (-5 0 С). Электрическая прочность конденсаторных масел не менее 20 МВ/м.
Кабельные масла используются в производстве силовых электрических кабелей; Пропитывая бумажную изоляцию этих кабелей, они повышают её электрическую прочность, а также способствуют отводу теплоты потерь. Кабельные масла бывают различных типов. Для пропитки изоляции силовых кабелей на рабочие напряжения до 35 кВ в свинцовых или алюминиевых оболочках ( кабели с вязкой пропиткой ) применяется масло марки КМ-25 с кинематической вязкостью не менее 23 мм 2 /c при 100 0 С, температурой застывания не выше минус 10 0 С и температурой вспышки не ниже +220 0 С. Для увеличения вязкости к этому маслу дополнительно добавляется канифоль или же синтетический загуститель.
В маслонаполненных кабелях используются менее вязкие масла. Так, масло марки МН-4 применяется для маслонаполненных кабелей на напряжения 110-220 кВ, в которых во время эксплуатации с помощью подпитывающих устройств поддерживается избыточное давление 0,3 - 0,4 МПа.
Для маслонаполненных кабелей высокого давления ( до 1,5 МПа ) на напряжения от 110-500 кВ, прокладываемых в стальных трубах, применяется особо тщательно очищенное масло марки С-200.
Жидкие синтетические диэлектрики.
Для пропитки
конденсаторов с целью
Рассмотрим наиболее важные:
Хлорированные углеводороды (получаются из различных углеводородов путём замены в их молекулах некоторых ( или даже всех ) атомов водорода атомами хлора). Широкое применение имеют полярные продукты хлорирования дифенила , имеющие общий состав С 12 Н 10-n CL n (n - степень хлорирования от 3 до 6).
Хлорированные дифенилы обладают e r , повышенной по сравнению с неполярными нефтяными маслами, поэтому замена масел на хлорированные дифенилы при пропитке конденсаторов уменьшает объём конденсатора ( при этой же электрической ёмкости ) почти в 2 раза. Преимуществом хлорированных дифенилов является его не горючесть.
Однако хлорированные дифенилы имеют и свои недостатки: они сильно токсичны, (из-за этого применение их для пропитки конденсаторов в некоторых странах запрещено законом); на их электроизоляционные свойства весьма значительно влияют примеси (наличие которых сказывается на потерях сквозной электропроводности при повышенной температуре); заметное снижение их e r и, следовательно ёмкости пропитанных хлорированными дифенилами конденсаторов при пониженных температурах; хлорированные дифенилы обладают сравнительно высокой вязкостью, что в некоторых случаях вызывает необходимость разбавления их менее вязкими хлорированными углеводородами.
Фтороорганические жидкости имеют малый tg d , ничтожно малую гигроскопичность и высокую нагревостойкость. Некоторые фтороорганические жидкости могут длительно работать при температуре 200 0 С и выше. Пары некоторых фтороорганических жидкостей имеют высокую для газообразных диэлектриков электрическую прочность.
Свойства
характерные для
Фтороорганические жидкости способны обеспечить интенсивный отвод теплоты потерь от охлаждаемых ими обмоток и магнитопроводов, чем нефтяные масла или кремнийорганические жидкости. Существуют специальные конструкции малогабаритных электротехнических устройств с заливкой фтороорганическими жидкостями, в которых для улучшения отвода теплоты используется испарение жидкости с последующей конденсацией её в охладителе и возвратом в устройство ( кипящая изоляция ); при этом теплота испарения отнимается от охлаждаемых обмоток, а наличие в пространстве над жидкостью фтороорганических паров, особенно под повышенным давлением, значительно увеличивает электрическую прочность газовой среды в аппарате.
Важным
преимуществом
Кремнийорганические жидкости обладают малым tg d, низкой гигроскопичностью и повышенной нагревостойкостью. Для них характерна слабовыраженная зависимость вязкости от температуры. Эти жидкости весьма дорогие.