Проблемы развития энергетики

Автор работы: Пользователь скрыл имя, 23 Мая 2016 в 12:00, реферат

Описание работы

Источником энергии в существующих сегодня АЭС служат ядра тяжелых химических элементов, которые при распаде на части высвобождают огромную (в сравнении с химическими источниками энергии) удельную энергию. При распаде одного килограмма ядер урана выделяется столько энергии, сколько при сгорании примерно двух с половиной тысяч тонн угля. Эта энергия появляется в основном в виде кинетической энергии осколков ядер, разлетающихся и ускоряющихся под действием кулоновских сил отталкивания.

Файлы: 1 файл

Реферат Введение в специальность.docx

— 359.48 Кб (Скачать файл)

Министерство сельского хозяйства Российской Федерации

ФГБОУ ВПО «ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ

УНИВЕРСИТЕТ СЕВЕРНОГО ЗАУРАЛЬЯ»

МЕХАНИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

Кафедра «Энергообеспечение сельского хозяйства»

Дисциплина «Введение в специальность»

 

 

 

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 К КОНТРОЛЬНОЙ РАБОТЕ

 

 

 

 

       

Выполнил студент 1 курса   

                                                                                                              Тимофеев

группы Б-ЭЭ-12                                                                                   Константин

                                                                                         (подпись)                     Александрович

 

 

 

Руководитель проекта

______________________                          ___                             А.А. Вихлянцев (уч. степень, уч. звание, должность)                                   (подпись)

 

 

 

 

 

 

 

 

Тюмень – 2014

Принцип работы АЭС, проблемы.

 

Способы преобразования ядерной энергии в механическую и электрическую

Состав основного оборудования энергоблоков АЭС

Обеспечение безопасности работы атомных электростанций

Проблемы развития энергетики

Использование энергии атомного ядра, развитие атомной энергетики снимает остроту этой проблемы.

Состояние ядерной энергетики

Источником энергии в существующих сегодня АЭС служат ядра тяжелых химических элементов, которые при распаде на части высвобождают огромную (в сравнении с химическими источниками энергии) удельную энергию. При распаде одного килограмма ядер урана выделяется столько энергии, сколько при сгорании примерно двух с половиной тысяч тонн угля. Эта энергия появляется в основном в виде кинетической энергии осколков ядер, разлетающихся и ускоряющихся под действием кулоновских сил отталкивания.

 

Физические основы ядерной энергетики: В состав ядер входят протоны и нейтроны. Название ядра по латыни звучит nucleus, поэтому эти частицы называют нуклонами. Между нуклонами есть два вида взаимодействий – электромагнитное и ядерное. Ядерное взаимодействие проявляется на очень малых расстояниях. Это расстояние мало в сравнении с размерами самих атомов. Относительные величины сил кулоновского отталкивания и сил ядерного взаимодействия сильно отличаются. Внутри ядра ядерные силы примерно в 100 раз интенсивнее, чем электрические, поэтому ядерное взаимодействие еще называют сильным взаимодействием. Потенциальная энергия взаимодействующих в ядре протонов и нейтронов (нуклонов) отсчитывается от того состояния, когда все составляющие ядро части находятся далеко друг от друга. Потенциальная энергия и стабильных и радиоактивных ядер отрицательна, причем ее отрицательность обеспечивается сильным взаимодействием. Если разделить полную потенциальную энергию ядра на количество нуклонов (протонов и нейтронов), то каждое ядро может быть охарактеризовано удельной (на один нуклон) отрицательной потенциальной энергией. Можно сказать, что каждый нуклон в составе ядра находится в глубокой потенциальной яме. Эта удельная потенциальная энергия зависит от количества протонов и нейтронов в ядре. Для ядер химических элементов, соответствующих середине таблицы Менделеева – железо, никель, кобальт, глубина потенциальной ямы для каждого нуклона самая большая. Если мы проведем мысленный эксперимент по «сборке» ядра из компонентов, то для добавления в ядро очередного протона нам потребуется сначала преодолеть кулоновское отталкивание этого протона с теми протонами, которые уже находятся в составе ядра, а для добавления очередного нейтрона нам не потребуется преодолевать кулоновских сил отталкивания. Зато, когда очередной нуклон окажется на расстоянии действия ядерных сил, взаимодействие между нуклонами приводит к опусканию нуклона в глубокую потенциальную яму, которая гораздо глубже потенциального барьера электрических сил отталкивания.

Ядерные реакции, приводящие к выделению энергии: разная удельная глубина потенциальной ямы для нуклонов, входящих в состав разных ядер, обеспечивает возможность получения энергии при ядерных превращениях. Например, при слиянии ядер химических элементов, находящихся в начале таблицы Менделеева, глубина потенциальной ямы для нуклонов во вновь полученных ядрах увеличивается, следовательно, при слиянии легких ядер выделяется энергия, причем в основном в виде электромагнитного излучения. Этот способ получения энергии реализован в водородной бомбе. Для того, чтобы легкие ядра приблизились друг к другу настолько, чтобы между ними начали действовать ядерные силы нужно привести их в движение с огромными скоростями. Тогда при столкновениях ядер их кинетической энергии будет достаточно, чтобы преодолеть потенциальный барьер, созданный электрическими силами отталкивания. В водородной бомбе процесс выделения энергии при синтезе более тяжелых ядер из легких неуправляем. Если ученым удастся найти надежный и дешевый способ управления реакцией слияния легких ядер, то в распоряжении человечества окажется практически неисчерпаемый источник энергии. Второй путь получения энергии связан с распадом ядер тяжелых химических элементов на осколки, которые становятся ядрами химических элементов, соответствующих середине таблицы Менделеева. Возможность самопроизвольного распада ядер тяжелых элементов существует, но вероятность этого процесса невелика, поэтому ядра урана-235 и урана-238 живут очень долго. Вследствие самопроизвольного распада половина от большого числа ядер урана-235 распадается за 1, а урана-238 за 7 миллиардов лет соответственно. Естественное содержание урана-235 составляет примерно 0,7% от общей массы. Кстати этих данных об изотопном составе урана и временах полураспада его естественных изотопов хватает, чтобы оценить возраст ядер урана, входящих в состав пород Земли. Если предположить, что в момент рождения концентрации этих ядер были примерно одинаковы, то требуется около 8 миллиардов лет, чтобы установилось наблюдаемое сейчас отношение концентрации изотопов урана 235 и 238. То есть взрыв звезды, из остатков которой впоследствии образовалась Солнечная система, произошел примерно 8 миллиардов лет назад.

Цепные реакции: однако, если в ядро урана-235 добавить один лишний нейтрон, то вновь образованное ядро оказывается в возбужденном состоянии (нейтрон добавил при попадании в потенциальную яму своих соседей несколько МэВ). Такое состояние является неустойчивым (радиоактивным). Один из путей перехода ядра из этого возбужденного состояния в более устойчивое состоит в том, что через очень небольшое время ядро распадается на два осколка. В ядрах–осколках соотношение между числом протонов и числом нейтронов нетипично для стабильных изотопов (природных ядер) нейтроны находятся в избытке. Ядра-осколки могут быть радиоактивными или испускать свои «лишние» нейтроны. В среднем в результате вторичных реакций радиоактивных ядер-осколков на одно распавшееся ядро урана появляются от 2 до 4 нейтронов. Появление в результате распада ядер новых нейтронов обуславливает возможность осуществления положительной обратной связи: чем больше начальных нейтронов поглотится ядрами, тем больше произойдет распадов неустойчивых ядер, в результате этих распадов появляется еще большее количество нейтронов, которые опять поглощаются ядрами, а эти ядра в свою очередь распадаются на осколки, рождая еще большее количество нейтронов. Такая реакция носит название цепной разветвляющейся реакции. Цепь реакций может оборваться, если нейтрон покинет область, в которой имеются ядра урана, или если он будет поглощен каким-нибудь другим ядром. Первый из этих двух механизмов торможения цепной реакции используется в урановой-235 или плутониевой-239 ядерной бомбе. До приведения урана-235 в урановой бомбе в боевое состояние размеры уранового заряда велики. Поэтому нейтроны, образующиеся при самопроизвольных распадах ядер, не поглощаются другими ядрами урана, а покидают область расположения урана. Цепная реакция гаснет, не успев развиться.

С помощью обычного химического взрыва урановый заряд «обжимают» со всех сторон и удерживают под давлением короткое время. Размеры области, занятой ураном, становятся после «обжатия» достаточными для развития цепной ядерной реакции. За короткое время порядка 0,1 микросекунды часть ядер урана (примерно 1% от общего числа) успевает развалиться и выделить колоссальную энергию. Остальные атомы урана, не успев прореагировать, разлетаются вследствие возрастания температуры и давления. В урановой бомбе происходит неуправляемое выделение энергии. Ученые научились управлять скоростью цепной ядерной реакции. Самым важным моментом здесь является то обстоятельство, что не все ядра – осколки разваливаются сразу. Те осколки, что разваливаются за время меньшее секунды, производят так называемые «мгновенные» нейтроны. Однако продукты распада ядер урана в свою очередь распадаются с испусканием нейтронов с опозданием. Именно наличие этих «запаздывающих» нейтронов и дает возможность регулировать скорость цепной реакции. Важную роль в этом регулировании играет поглощение нейтронов ядрами некоторых атомов. Рядом с урановыми стержнями помещают стержни из материала, содержащего атомы кадмия, поглощающие нейтроны в сотни раз эффективнее, чем уран. Стержни можно механически перемещать и, таким образом, регулировать скорость течения цепной реакции.

Устройство ядерного реактора: в ядерных реакторах энергия распада ядер урана преобразуется в электрическую энергию. После распада ядра кинетическая энергия осколков ядер переходит в тепловую энергию материала, загруженного в реактор. Плотность тепловыделения в энергетических ядерных реакторах достигает сотен кВт на литр объема активной зоны. Эта энергия с помощью жидкости, протекающей по трубам внутри рабочей зоны реактора (первый контур циркуляции), переносится в теплообменники. Здесь она используется для того, чтобы нагреть и превратить в пар воду. Водяной пар направляют в турбину, производящую электрический ток. Расширяясь и совершая работу по вращению турбины, пар охлаждается. Чтобы циклически использовать одну и ту же воду, отработавший пар охлаждают в теплообменниках второго контура циркуляции и вновь направляют к теплообменникам первого контура. Таким образом, ядерный реактор представляет собой тепловую машину, в которой нагревателем служит уран в рабочей зоне, а холодильником обычно служит вода протекающей мимо электростанции реки. Горячая вода частично направляется на обогрев домов и производственных помещений в городках при АЭС. Коэффициент полезного действия такой тепловой машины, преобразующей тепловую энергию в электрическую, обычно не превышает 30%. По этому показателю атомные электростанции ничем не отличаются от обычных тепловых электростанций.

Технические и экономические показатели АЭС: чтобы обеспечить работу одного энергоблока мощностью в тысячу мегаватт нужно, чтобы в рабочей зоне за год распалось примерно 1200 кг ядер урана. Если АЭС должна работать около 30 лет, то всего за время ее эксплуатации «сгорит» около 36 тонн урана – 235. В один такой энергоблок загружается около 180 тонн обогащенного уранового горючего. Обогащение составляет 1,8%, то есть от всего количества урана только 1,8% составляет уран-235. Итак, в реакторе находится около 3 тонн урана-235, а всего сгорает 36 тонн. Значит, на АЭС регулярно происходит частичная перезагрузка топлива, тепловыделяющие элементы (ТВЭЛ) заменяют. Используется, однако, только около 1,5% всего урана, то есть даже не весь уран-235 «сгорает».

 

ядерный реактор электростанция безопасность

Атомная электростанция (АЭС) – комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции.

В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции – ядерном реакторе.

Существует несколько типов ядерных реакторов. Наибольшее распространение получили тpи основных типа pеактоpов, различающихся, главным обpазом, топливом, теплоносителем, пpименяемым для поддержания нужной темпеpатуры активной зоны, и замедлителем, используемым для снижения скоpости нейтpонов, выделяющихся в пpоцессе pаспада и необходимых для поддеpжания цепной pеакции.

Сpеди них пеpвый и наиболее pаспpостpаненный тип – это pеактоp на обогащенном уpане, в котоpом и теплоносителем, и замедлителем является обычная, или "легкая", вода (легководный реактор). Существуют две основные pазновидности легководного реактора: pеактоp, в котоpом паp, вpащающий туpбины, обpазуется непосpедственно в активной зоне (кипящий реактор, в России – РБМК - реактор большой мощности, канальный), и pеактоp, в котоpом паp обpазуется во внешнем, или втоpом, контуpе, связанном с пеpвым контуpом теплообменниками и паpогенеpатоpами (водо водяной энергетический реактор – ВВЭР).

Втоpой тип pеактоpа – газоохлаждаемый pеактоp (с гpафитовым замедлителем).

Тpетий тип pеактоpа, – это реактоp, в котоpом и теплоносителем, и замедлителем является тяжелая вода, а топливом природный уран.

Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы – ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки – ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Схема станции – двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является некипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты – сильного поглотителя нейтронов, что используется для регулирования мощности реактора.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).

Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором. Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают "Систему аварийного охлаждения активной зоны" (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора, и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно "Правилам ядерной безопасности реакторных установок атомных станций", по крайней мере, одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений. Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Информация о работе Проблемы развития энергетики