Приборы для автоматического определения вязкости. Капиллярные вискозиметры

Автор работы: Пользователь скрыл имя, 20 Марта 2016 в 16:07, контрольная работа

Описание работы

Цель разработки – проект мобильного (вес с элементами питания – менее 0,4кг) ультразвукового вискозиметра с цифровой индикацией.
Задачи, необходимые для достижения поставленной цели:
изучение теоретических основ вискозиметра;
изучение свойств и принципа работы устройства;
построение сборочного чертежа ультразвукового вискозиметра.

Файлы: 1 файл

КР по Основы автоматизации производственных процессов вариант №6.docx

— 516.08 Кб (Скачать файл)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Ухтинский государственный технический университет»

(УГТУ)

Институт повышения квалификации –

независимый аттестационно-методический центр

 

Программа профессиональной переподготовки: Сооружение и эксплуатация объектов магистрального транспорта нефти и газа

 

 

КОНТРОЛЬНАЯ  РАБОТА

 

Дисциплина: Основы автоматизации производственных процессов

 

Тема: Приборы для автоматического определения вязкости. Капиллярные вискозиметры. Вискозиметры с падающим шариком. Ротационный вискозиметр.

 

 

Шифр 76    Вариант 6

 

 

Нуриев Саил Наил оглы

 

 

 

 

Ухта 2016

СОДЕРЖАНИЕ

 

 

 

ВВЕДЕНИЕ

 

Вязкость — свойство жидкостей оказывать сопротивление перемещению одного слоя относительно другого. Количественно вязкость характеризуется значением динамической вязкости или коэффициентом внутреннего трения.

Характерной особенностью этого вида трения является то, что оно наблюдается не на границе твердого тела и жидкости, а во всем объеме жидкости.

Кинематическая вязкость равна отношению динамической вязкости среды к ее плотности при той же температуре.

При измерениях часто пользуются также величиной относительной (условной) вязкости, характеризующейся отношением вязкости данной жидкости к вязкости воды при той же температуре.

Вискозиметр – прибор для измерения вязкости [1].

Цель разработки – проект мобильного (вес с элементами питания – менее 0,4кг) ультразвукового вискозиметра с цифровой индикацией.

Задачи, необходимые для достижения поставленной цели:

    • изучение теоретических основ вискозиметра;
    • изучение свойств и принципа работы устройства;
    • построение сборочного чертежа ультразвукового вискозиметра.

 

 

  1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ВИСКОЗИМЕТРА

 

1.1 Применение  вискозиметров

 

Области применения вискозиметров чрезвычайно разнообразны.

В медицине используются капиллярные вискозиметры (вискозиметр ВПЖ, ВНЖ, ВК-4). Так, например, острую актуальность имеет измерение вязкости человеческой крови. При тяжелой физической работе увеличивается вязкость крови.

Многие инфекционные заболевания увеличивают вязкость, другие, например, брюшной тиф и туберкулез – значительно уменьшают. Любое изменение вязкости крови сказывается на РОЭ. Определение вязкости крови во взаимосвязи с рядом других анализов позволяет объективно оценить состояние человеческого организма. Вязкость крови в лабораторных условиях может быть определена и при помощи метода падающего шарика вискозметрии [1].

В фармацевтических лабораториях вискозиметры используются при изготовлении лекарственных препаратов, патоки, мазей, линиментов.

В нефтянной промышленности используются как ротационные вискозиметры системы Brookfield, так и полевые чашечные капиллярные вискозиметры, позволяющие с достаточной степенью точности определить вязкие свойства нефти.

В химической промышленности и металлургии широко распространены универсальные, высокотемпературные вискозиметры, позволяющие оперировать со средами в широком диапазоне температур от -60°C до 2600°C

Тема вискозиметрии и её методов мало распространена и фактически не упоминается в повседневной жизни, но, по истине, прибор вискозиметр занимает достойное место в списке изобретений человечества. Отдельной статьи заслуживают высокотемпературные промышленные вискозиметры и высокоточные вискозиметры [2].

 

    1. Классификация вискозиметров

 

Вискозиметры классифицируются по следующим признакам:

– по температуре исследуемой среды различают высокотемпературные вискозиметры и вискозиметры, изготовленные из нетермостойких материалов;

– по свойствам исследуемой вязкой среды различают универсальные вискозиметры и специальные (т.е. предназначенные для измерения вязкости сред с определёнными заранее известными свойствами, например ньютоновских жидкостей);

– по методу вискозиметрии различают капиллярные, вибрационные, ультразвуковые, ротационные, пузырьковые, вискозиметры с падающим шариком;

– по точности измерений различают высокоточные вискозиметры и даже т.н. образцовые вискозиметры;

– по области применения различают промышленные, лабораторные, медицинские вискозиметры;

– есть и такой вид вискозиметра, как полевой вискозиметр, - вискозиметр примитивной конструкции [2,3].

 

 

2 ОСНОВНЫЕ МЕТОДЫ ВИСКОЗИМЕТРИИ

 

2.1 Капиллярный метод вискозиметрии

 

Метод капиллярной вискозиметрии опирается на закон Пуазейля о вязкой жидкости, описывающий закономерности движения жидкости в капилляре.

Определение вязкости состоит в измерении времени протекания известного количества (объёма) жидкости или газа через узкие трубки круглого сечения (капилляры) при заданном перепаде давления. Капиллярными В. измеряют вязкость от 10-5 н∙сек/м2 (газы) до 104 н∙сек/м2 (консистентные смазки).

Относительная погрешность образцовых капиллярных В.±0,1—0,3%, рабочих приборов ±0,5—2,5%.

Приведем уравнение гидродинамики для стационарного течения жидкости, с вязкостью η через капилляр вискозиметра:

 

 

где Q – количество жидкости, протекающей через капилляр капиллярного вискозиметра в единицу времени, м3/с,

R – радиус капилляра  вискозиметра, м

L – длина капилляра  капиллярного вискозиметра, м

η – вязкость жидкости, Па·с,

р - разность давлений на концах капилляра вискозиметра, Па.

Отметим, что формула Пуазейля справедлива только для ламинарного потока жидкости, то есть, при отсутствии скольжения на границе, жидкость – стенка капилляра вискозиметра. Приведенное уравнение используют для определения динамической вязкости [2].

На рисунке 1 расположено схематическое изображение капиллярного вискозиметра.

 

Рисунок 1 – Схематическое изображение капиллярного вискозиметра

 

В капиллярном вискозиметре жидкость из одного сосуда под влиянием разности давлений р истекает через капилляр сечения 2R и длины L в другой сосуд. Из рисунка видно, что сосуды имеют во много раз большее поперечное сечение, чем капилляр вискозиметра, и соответственно этому скорость движения жидкости в обоих сосудах в N раз меньше, чем в капилляре вискозиметра.

Таким образом не все давление пойдет на преодоление вязкого сопротивления жидкости, очевидно, что часть его будет расходоваться на сообщение жидкости нопределённой кинетической энергии. Следовательно, в уравнение Пуазейля необходимо ввести некоторую поправку на кинетическую энергию, называемую поправкой Хагенбаха:

 

 

где h – коэффициент, стремящийся к единице,

d –плотность иссдледуемой  жидкости.

Вторую поправку условно назовём поправкой влияния начального участка капилляра вискозиметра на характер движения исследуемой жидкости. Она будет характеризовать возможное возникновение винтового движения и завихрения в месте сопряжения капилляра с резервуаром капиллярного вискозиметра (откуда вытекает жидкость).

Суть поправки состоит в том, что вместо истинной длины капилляра вискозиметра L мы вводим кажущуюся длину L':

 

 

где n – определяется экспериментально на основе изменений при разных значениях L и примерно равен единице.

Следует учитывать, что при измерении вязкости органических жидкостей с большой кинематической вязкостью поправка Хагенбаха незначительна и составляет доли процента. Если же говорить о высокотемпературных вискозиметрах, то вследствие малой кинематической вязкости жидких металлов поправка может достигать 15%.

Метод капиллярной вискозиметрии вполне можно отнести к высокоточному методу вискозиметрии в силу того, что относительная погрешность измерений составляет доли процента, в зависимости от подбора материалов вискозиметра и точности отсчёта времени, а также иных параметров, участвующих в методе капиллярного истечения [3].

На рисунке 2 показано устройство различных типов стеклянных вискозиметров. В капиллярных вискозиметрах указанных типов течение жидкости происходит под действием силы тяжести (в начальный момент уровень жидкости в одном колене вискозиметра выше, чем в другом).

Время опорожнения измерительного резервуара определяют как промежуток между моментами прохождения уровня жидкости мимо меток на верхних и нижних концах резервуара. В капиллярных автоматических вискозиметрах (непрерывного действия) жидкость поступает в капилляр от насоса постоянной производительности. Перепад давления на капилляре, измеряемый манометром, пропорционален искомой вязкости [4].

 

Рисунок 2 – Стеклянные капиллярные вискозиметры

 

1 — измерительные резервуары; 2 — капилляры; 3 — приемные сосуды; 4 — питающий резервуар (в вискозиметрах для непрозрачных жидкостей ВНЖ); 5 — термостатирующая рубашка; M1, M2 (у ВНЖ также M3) — метки, служащие для измерения времени истечения жидкости из измерительных резервуаров или их заполнения (у ВНЖ).

 

2.2 Вибрационный  метод вискозиметрии

 

Вибрационный вискозиметр в самом простом случае представляет из себя резервуар с вязкой жидкостью и некоторое тело (пластина, шар, цидлиндр), называемое зондом вискозиметра, которое производит вынужденные колебания в вязкой среде.

Сущность эксперимента заключается в определении изменений параметров вынужденных колебаний зонда вискозиметра при погружении его в вязкую среду. Руководствуясь теорией метода вибрационной вискозиметрии, по значением этих параметров определяют вязкость среды.

Вибрационый вискозиметр имеет значительно большую по сравнению с ротационными вискозиметрами чувствительность и также может быть применён для сред температурой до 2000°C в инертной атмосфере или вакууме при наличии как больших, так и сравнительно малых масс расплавов.

В настоящее время для измерения динамической вязкости широко применяют электронные вибрационные вискозиметры, в которых зонд совершает вынужденные колебания под воздействием импульсов электромагнитного вибратора со встроенным датчиком амплитуды.

Вибрационные высокотемпературные вискозиметры с электронным дистанционным управлением могут использоваться в условиях агрессивных средств.

Относительная погрешность измерений при использовании вибрационного вискозиметра составляет ±0,5-1%.

При работе расплавами в интервале 700—1900°C общая погрешность вискозиметра увеличивается и может составить ±3-5%.

Вибрационный метод вискозиметрии базируется на определении изменений параметров вынужденных колебаний тела правильной геометрической формы, называемого зондом вибрационного вискозиметра,при погружении его в исследуемую среду.

Вязкость исследуемой среды определяется по значениям этих параметров, при этом обычно используется градуировочная кривая вискозиметра (для случая примитивного вибрационного вискозиметра; в целом, не теряя общности, этот принцип переносится и на более сложные приборы) [3,4].

Рисунок 3 – Схематическое изображение вибрационного вискозиметра

Введём несколько обозначений:

ω – частота колебаний;

τ – время колебания тонкого упруго закрепленного зонда вибрационного вискозиметра;

S - площадь пластины зонда  вискозиметра; колебания происходят  под действием гармонической  силы

 

 

Вязкость и плотность исследуемой среды соответственно обозначим η и d.

Частотно-фазовый вариант вибрационного метода вискозиметрии используется для сильно-вязких жидкостей.

В этом случае измеряется частота колебаний зонда вискозиметра, сначала не погруженного (ω0) и затем погруженного (ω) в жидкость при сдвиге фаз

 

 

Для измерения вязкости менее вязких сред, например, металлических расплавов наиболее подходящим является амплитудно-резонансный вариант вибрационного метода вискозиметрии.

В этом случае добиваются того, чтобы амплитуда А колебаний была максимальной (путём подбора частот колебаний). Поэтому измеряемым параметром, по которому определяется вязкость становится амплитуда колебаний зонда вискозиметра.

Информация о работе Приборы для автоматического определения вязкости. Капиллярные вискозиметры