Выборочный метод в статистике

Автор работы: Пользователь скрыл имя, 04 Апреля 2011 в 20:02, реферат

Описание работы

1. Понятие о выборочном наблюдении, его задачи
2. Ошибки выборки

Файлы: 1 файл

выборочный метод.doc

— 233.50 Кб (Скачать файл)

  При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

•   для средней количественного признака

(3)

•    для доли (альтернативного признака)

(4)

Поскольку практически дисперсия признака в генеральной совокупности точно неизвестна, на практике пользуются

значением дисперсии S2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Таким образом, расчетные формулы средней ошибки выборки при случайном повторном отборе будут следующие:

•    для средней количественного признака

(5)

•    для доли (альтернативного признака)

(6)

Однако дисперсия выборочной совокупности не равна дисперсии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (5) и (6), будут приближенными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборочную следующим соотношением:

(7)

Так как  п / (n -1) при достаточно больших п — величина, близкая к единице, то можно принять, что = S2, а следовательно, в практических расчетах средних ошибок выборки можно использовать формулы (5) и (6). И только в случаях малой выборки (когда объем выборки не превышает 30) необходимо учитывать коэффициент п/(п-1) и исчислять среднюю ошибку малой выборки по формуле:

(8)

При случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подкоренное выражение умножить на 1-(п/N), поскольку в процессе бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной выборки расчетные формулы средней ошибки выборки примут такой вид:

•       для средней количественного признака

(9)

•   для доли (альтернативного признака)

(10)

Так как  п всегда меньше N, то дополнительный множитель 1 - (n / N) всегда будет меньше единицы. Отсюда следует, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. В то же время при сравнительно небольшом проценте выборки этот множитель близок к единице (например, при 5%-ной выборке он равен 0,95; при 2%-ной — 0,98 и т.д.). Поэтому иногда на практике пользуются для определения средней ошибки выборки формулами (5) и (6) без указанного множителя, хотя выборку и организуют как бесповторную. Это имеет место в тех случаях, когда число единиц генеральной совокупности N неизвестно или безгранично, или когда п очень мало по сравнению с N, и по существу, введение дополнительного множителя, близкого по значению к единице, практически не повлияет на значение средней ошибки выборки.

Механическая  выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по нейтральному признаку на равные интервалы (группы), производится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематической ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации  механического отбора единицы совокупности предварительно располагают (обычно в списке) в определенном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо показателя, не связанного с изучаемым свойством, и т.д.), после чего отбирают заданное число единиц механически, через определенный итервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2%-ной выборке отбирается и проверяется каждая 50-я единица (1 : 0,02), при 5 %-ной выборке — каждая 20-я единица (1 : 0,05), например, сходящая со станка деталь.

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному. Поэтому для определения средней ошибки механической выборки используют формулы собственно-случайной бесповторной выборки (9), (10).

Для отбора единиц из неоднородной совокупности применяется, так называемая типическая выборка, которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

При обследовании предприятий такими группами могут  быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая  выборка обычно применяется при  изучении сложных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдельных отраслях экономики, производительности труда рабочих предприятия, представленных отдельными группами по квалификации.

Типическая  выборка дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки,

При определении  средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку выборки находят по формулам:

•   для средней количественного признака

(повторный отбор);          (11)

(бесповторный отбор);   (12)

•  для доли (альтернативного признака)

(повторный отбор);           (13)

(бесповторный отбор),     (14)

        где   — средняя из внутригрупповых дисперсий по выборочной совокупности;

 - средняя из внутригрупповых дисперсий доли (альтернативного

        признака) по выборочной совокупности.

Серийная  выборка предполагает случайный отбор из генеральной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюдению все без исключения единицы.

Применение  серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить несколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все  без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Среднюю ошибку выборки для  средней количественного  признака при серийном отборе находят по формулам:

(повторный отбор);    (15)

(бесповторный отбор),  (16)

где r - число отобранных серий; R - общее число серий.

Межгрупповую  дисперсию серийной выборки вычисляют  следующим образом:

где средняя i-й серии; - общая средняя по всей выборочной совокупности.

Средняя ошибка выборки для  доли (альтернативного  признака) при серийном отборе:

(повторный отбор);   (17)

(бесповторный отбор).  (18)

Межгрупповую  (межсерийную) дисперсию доли серийной выборки определяют по формуле:

(19)

где w i - доля признака в i-и серии; - общая доля признака во всей выборочной совокупности.

В практике статистических обследований помимо рассмотренных ранее способов отбора применяется их комбинация (комбинированный отбор).

3. Распространение выборочных результатов на генеральную совокупность

Конечной целью  выборочного наблюдения является характеристика генеральной совокупности на основе выборочных результатов.

Выборочные средние  и относительные величины распространяют на генеральную совокупность с учетом предела их возможной ошибки.

В каждой конкретной выборке расхождение между выборочной средней и генеральной, т. е. может быть меньше средней ошибки выборки , равно ей или больше ее.

Причем каждое из этих расхождений имеет различную  вероятность (объективную возможность появления события). Поэтому фактические расхождения между выборочной средней и генеральной можно рассматривать как некую предельную ошибку, связанную со средней ошибкой и гарантируемую с определенной вероятностью Р.

Предельную  ошибку выборки для  средней ( ) при повторном отборе можно рассчитать по формуле:

(20)

где t - нормированное отклонение — «коэффициент доверия», зависящий от вероятности, с которой гарантируется предельная ошибка выборки;

 — средняя ошибка выборки.

Аналогичным образом  может быть записана формула предельной ошибки выборки для доли при повторном отборе:

(21)

При случайном бесповторном отборе в формулах расчета предельных ошибок выборки (20) и (21) необходимо умножить подкоренное выражение на 1 - (n / N).

Формула предельной ошибки выборки вытекает из основных положений теории выборочного  метода, сформулированных в ряде теорем теории вероятностей, отражающих закон больших чисел.

На основании  теоремы П.Л. Чебышева (с уточнениями А.М. Ляпунова) с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной генеральной дисперсии выборочные обобщающие показатели (средняя, доля) будут сколь угодно мало отличаться от соответствующих генеральных показателей.

Применительно к нахождению среднего значения признака эта теорема может быть записана так:

(22)

а для  доли признака:

(23)

Информация о работе Выборочный метод в статистике