Виды средних величин

Автор работы: Пользователь скрыл имя, 30 Ноября 2014 в 00:35, реферат

Описание работы

Средней величиной называется статистический показатель, который дает обобщенную характеристику варьирующего признака однородных единиц совокупности.
Величина средней дает обобщающую количественную характеристику всей совокупности и характеризует ее в отношении данного признака.

Файлы: 1 файл

виды средних величин статистика.docx

— 46.58 Кб (Скачать файл)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ «(РИНХ)»

 

 

 

 

Реферат на тему:

«Виды средних величин»

 

 

 

 

 

 

 

Выполнила студентка:

группы 513 ЭК

 

 

 

 

 

 

Ростов-на-Дону, 2012 год.

Средней величиной называется статистический показатель, который дает обобщенную характеристику варьирующего признака однородных единиц совокупности.

Величина средней дает обобщающую количественную характеристику всей совокупности и характеризует ее в отношении данного признака.

Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения вызванные основным фактором.

Статистическая обработка методом средних величин заключается в замене индивидуальных значений варьирующего признака   некоторой уравновешенной средней величиной  .

Например, индивидуальная выработка у 5 операционистов коммерческого банка за день составила 136, 140, 154 и 162 операции. Чтобы получить среднее число операций за день, выполненных одним операционистом, необходимо сложить эти индивидуальные показатели и полученную сумму разделить на количество операционистов:

 операций.

Как видно из приведенного примера, среднее число операций не совпадает ни с одним из индивидуальных, так как ни один операционист не сделал 150 операций. Но если мы представим себе, что каждый операционист сделал по 150 операций, то их общая сумма не изменится, а будет также равна 750. Таким образом, мы пришли к основному свойству средних величин: сумма индивидуальных значений признака равна сумме средних величин.

Это свойство еще раз подчеркивает, что средняя величина является обобщающей характеристикой всей статистической совокупности.

Средние величины широко применяются в различных отраслях знаний. Особо важную роль они играют в экономике и статистике: при анализе, планировании, прогнозировании, при расчете нормативов и при оценке достигнутого уровня. Средняя всегда именованная величина и имеет ту же размерность, что и отдельная единица совокупности.

Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:

  1. В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.
  2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.

В экономических исследованиях применяются две категории средних: степенные средние и структурные средние.

Виды средних величин

Наименование  
средней

Формула средней

Простая

Взвешенная

Арифметическая

Гармоническая

Геометрическая

Квадратическая


 

 

х – индивидуальное значение признака,

n – число значений признака.

К степенным средним относятся: средняя арифметическая, средняя гармоническая, средняя геометрическая и средняя квадратическая. Средняя обозначается через  . Черта вверху символизирует процесс осреднения индивидуальных значений. Частота – повторяемость отдельных значений признака – обозначается буквой f.

Вопрос о выборе средней решается в каждом отдельном случае, исходя из задач исследования и наличия исходной информации.

Средняя арифметическая простая используется в тех случаях, когда варианты или варьирующие признаки встречаются только по одному разу и имеют одинаковый вес в совокупности. Средняя арифметическая взвешенная используется, когда данные сгруппированы, а отдельные значения признака встречаются неодинаковое число раз.

Средняя гармоническая – это величина, обратная средней арифметической из обратных значений признака. Средняя гармоническая вычисляется в тех случаях, когда в качестве весов применяются не единицы совокупности, а произведения этих единиц на значения признака (то есть М=х×f).

Средняя гармоническая простая исчисляется в тех случаях, когда веса одинаковы, то есть равны между собой.

Средняя геометрическая простая используется при вычислении среднего коэффициента роста (темпа роста) в рядах динамики.

Средняя квадратическая используется для расчетов среднего квадратического отклонения (s) при изучении темы «Показатели вариации».

Для вычисления средней в дискретных рядах варианты нужно умножить на частоты и сумму произведений разделить на сумму частот, то есть по средней арифметической взвешенной  .

Для вычисления средней в интервальных рядах нужно перейти к дискретному ряду, то есть по каждой группе вычислить значение интервала, заменить интервал его средним значением и вычислить по формуле

.

Для того чтобы проверить правильность выбора формул, надо учитывать:

–  среднее значение признака не должно выходить за пределы минимального и максимального значений признака совокупности;

–  среднее значение ближе к тому значению признака, которому соответствует большая частота.

Степенные средние дают обобщающую характеристику совокупности и являются абстрактными величинами, полученными расчетным путем, в то же время эти средние не отражают всех особенностей совокупности, они могут быть различными для одинаковых совокупностей или иметь одинаковое значение для совокупности с различным строением.

Структурные средние используются для более полной характеристики совокупности. К ним относятся:

Мода – это варианта с наибольшей частотой (М0);

Медиана – это варианта, делящая совокупность на две равные части (Ме).

Квартили – это варианта, делящая совокупность на четыре равные части;

Децили – это варианта, делящая совокупность на десять равных частей.

Выбор вида средней величины в каждом конкретном случае определяется целью исследования и характером имеющихся данных.

Для дискретного ранжированного ряда значения признака расположены в порядке возрастания или убывания, место медианы в ряду определяют по формуле

,

где   n – число членов ряда.

Если же ряд распределения состоит из четного числа членов, то за медиану принимают среднюю арифметическую из двух средних значений.

В интервальном ряду мода определяется по формуле

,

где   хм0 – нижняя граница модального интервала;

fм0 – частота модального интервала;

f(м0-1) – частота интервала, предшествующего модальному;

f(м0+1) – частота интервала, следующего за модальным.

В интервальном ряду распределения для нахождения медианы сначала указывают интервал, в котором она находится.

Медианным является первый интервал, в котором сумма накопленных частот превысит половину общего числа наблюдений.

Численное значение медианы вычисляется по формуле

,

где   n – сумма частот ряда;

Хме – нижняя граница медианного интервала;

i – величина интервала;

S(mе-1) – накопленная частота интервала, предшествующего медианному;

fmе – частота медианного интервала.

Мода, медиана, средняя для дискретного ряда распределения и для интервального ряда называются показателями центра распределения, т.к. они используются для анализа вариационных рядов.

 


Информация о работе Виды средних величин