Автор работы: Пользователь скрыл имя, 19 Сентября 2011 в 10:42, реферат
Статистикой называют планомерный и систематический учет осуществляемый в масштабах страны органами государственной статистики во главе с государственным комитетом РФ по статистике.
Статистика - цифровые данные публикуемые в специальных справочниках и средствах массовой информации.
Статистика - специальная научная дисциплина.
Предмет и содержание статистической науки.
Xmo - нижняя граница модальности (интервал ряда с наибольшей частотой)
Mo - величина интервала
fMo - частота модального интервала
fMo-1 - частота
интервала предшествующего
fMo+1 - частота
интервала следующего за
Медианой называется
такое значение варьирующего признака,
которое делит ряд
1. Если ряд
распределения дискретный и
2. Если в дискретном
ряду распределения нечетное
число уровней, то медианой
будет серединное значение
В интервальных рядах медиана определяется по формуле:
- нижняя граница медианного
интервала (интервала для
Me - величина интервала
- сумма частот ряда
- сумма накопленных частот
предшествующих медианному
- частота медианного интервала
Общее понятие о вариации
Вариацией называется различие значений признака у отдельных единиц совокупности.
Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности. Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака. Вариации присущи явлениям природы и общества. При этом революция в обществе происходит быстрее, чем аналогичные изменения в природе. Объективно существуют также вариации в пространстве и во времени.
Вариации
в пространстве показывают различие
статистических показателей относящихся
к различным административно-
Вариации во времени показывают различие показателей в зависимости от периода или момента времени к которым они относятся.
Меры вариаций
К примерам вариаций
относятся следующие
1. размах вариаций
2. среднее линейное отклонение
3. среднее квадратическое отклонение
4. дисперсия
5. коэффициент
1. Размах вариаций является ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблимость внутри совокупности. R=Xmax-Xmin.
2. Среднее линейное отклонение является средней величиной абсолютных значений отклонений от средней арифметической. Оно определяется по формуле:
- простая
Отклонения берутся по модулю, т.к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.
4. Дисперсия (средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблимости.
Дисперсия определяется по формулам:
пример: стр. 36
Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака. В данном случае она показывает, что средний размер отклонения прибыли по 50 предприятиям от средней прибыли составляет 1,48.
Дисперсия может быть также определена по формуле:
;
3. Среднее квадратическое отклонение определяется как корень из дисперсии.
По исходным данным приведенным выше, среднее квадратическое отклонение равно:
5. Коэффициент вариаций определяется как отношение среднего квадратического отклонения к средней величине признака, выраженное в процентах:
Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.
Дисперсия альтернативного признака
Альтернативными называются 2 взаимоисключающих друг друга признака. То признаки, которыми каждая отдельная единица совокупности либо обладает, либо не обладает. Наличие альтернативного признака принято обозначать через единицу, а отсутствие через 0. Долю единиц обладающих данным признаком обозначают через p (п), а долю единиц на обладающих данным признаком обозначают через q. При этом p+q=1.
Дисперсия альтернативного признака определяется по формуле:
Виды дисперсий. Привила их сложения.
Если исследуемую статистическую совокупность разделить на группу, то для каждой из них можно определить групповые средние и дисперсии. Эти дисперсии будет характеризовать колеблимость изучаемого признака каждой отдельной группе. На этой основе можно определить среднюю изнутри групповых дисперсий.
- i=fi- численность единиц в отдельных группах
Эта дисперсия
характеризует случайную
Вычисляется также межгрупповая дисперсия .
и ni=fiсоответственно средние и численности по отдельным группам.
Эта дисперсия характеризует вариацию по влиянием группировочного признака. Сумма средней изнутри групповых и межгрупповой дисперсий позволяет определить общую дисперсию.
Данное равенство называют правилом сложения дисперсий.
; , т.е. существует тесная зависимость между изготовлением деталей и другими показателями.
Если значения исследуемого признака выражаются в долях или коэффициентах, то правило сложения дисперсий выражается следующими формулами:
- i - численность единиц в отдельных группах
pi - доля изучаемого признака во всей совокупности
средняя из внутригрупповых дисперсий для долей признаков
Виды и формы зависимости между социально-экономическими явлениями
Многообразие взаимосвязей в которых находятся социально-экономические явления, рождают необходимость в их классификации.
По видам различают функциональную и корреляционную зависимость.
Функциональной называют такую зависимость, при которой одному значению факторного признака X соответствует одно строго определенное значение результативного признака Y.
В отличие от функциональной зависимости, корреляционная выражает такую связь между социально-экономическими явлениями, при которой одному значению факторного признака X могут соответствовать несколько значений результативного признака Y.
По направлению различают прямую и обратную зависимость.
Прямой называют такую зависимость, при которой значение факторного признака X и результативного признака Y изменяются в одном направлении. Т.о. при увеличении значения X, значения Y в среднем увеличиваются, а при уменьшении X - Y уменьшается.
Обратная зависимость между факторным и результативным признаками, если они изменяются в противоположных направлениях.
Статистические методы изучения взаимосвязей
Важное место в статистическом изучении взаимосвязей занимают следующие методы:
1. Метод приведения параллельных данных.
2. Метод аналитических группировок.
3. Графический метод.
4. Балансовый метод.
5. Индексный метод.
6. Корреляционно-регрессионный.
1. Сущность метода приведения параллельных данных заключается в следующем:
Исходные данные по признаку X располагаются в порядке возрастания или убывания, а по признаку Y записываются соответствующие им показатели. Путем сопоставления значений X и Y, делается вывод о наличии и направлении зависимости.
3. Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. При этом возможны следующие варианты:
а \, б/ (вверх) , в\ (вниз).
Если точки
на графике расположены
Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.
Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.
На основе метода
параллельных данных и графического
метода, могут быть рассчитаны показатели,
характеризующие степень
Наиболее кратным из них является коэффициент знаков Фехнера. Он рассчитывается по формуле:
C - сумма совпадающих
знаков отклонений
H - сумма несовпадений
Данный коэффициент изменяется в пределах (-1;1).
Значение KF=0 свидетельствует об отсутствии зависимости между изучаемыми признаками.
Если KF=±1, то это
говорит о наличии
- квадраты разности рангов
(R2-R1), n - число пар рангов
Данный коэффициент, как и предыдущий, изменяется в тех же пределах и имеет одинаковую с KFэкономическую интерпретацию.
В тех случаях, когда значение X или Y выражаются одинаковыми показателями, коэффициент корреляции рангов рассчитывается по следующей формуле:
tj - одинаковое число рангов в j - ряду
Если исследуется
зависимость между тремя и
более математическими
m - количество факторов
- - число наблюдений
S - отклонение суммы квадратов рангов от средней квадратов рангов
Изучение зависимости между количественными признаками
Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения, используется коэффициент ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней, а сами коэффициенты рассчитываются по формуле:
Информация о работе Общее понятие статистики. Предмет статистики