Основные типы шкал

Автор работы: Пользователь скрыл имя, 03 Апреля 2016 в 11:09, лекция

Описание работы

Определение номинального, порядкового, интервального типов шкал.
Неоднозначность соответствующих шкальных значений.
Общее представление об адекватности математического метода относительно типа используемых шкал.

Файлы: 1 файл

Лекция №4 Основные типы шкал..docx

— 21.77 Кб (Скачать файл)

Лекция №4 Основные типы шкал.

 

  1. Определение номинального, порядкового, интервального типов шкал.
  2. Неоднозначность соответствующих шкальных значений.
  3. Общее представление об адекватности математического метода относительно типа используемых шкал.

 

Общим местом стало рассмотрение в качестве основной специфической черты социологического измерения активное использование номинальных, порядковых, интервальных шкал. Напомним их определения.

Предположим, что мы приписываем респонденту число как обозначение, код его профессии. Ясно, что, анализируя полученные числа, мы можем судить лишь об их равенстве или неравенстве: из того, что два респондента закодированы одним числом, следует, что они имеют одинаковую профессию; разным числам отвечают разные профессии. Выражения типа 3 < 5 в таком случае становятся бессмысленными: они не отражают ничего реального. Это - номинальная шкала.

Ясно, что она отвечает отображению ЭСО с заданным отношением равенства в соответствующую ЧСО. Если же, например, каждому респонденту приписано число от 1 до 5 в соответствии с тем, как он ответил на вопрос типа: "Удовлетворены ли Вы своей работой?" (с вариантами ответов от "совершенно не удовлетворен" до "полностью удовлетворен", закодированными цифрами от 1 до 5 соответственно), то мы, кроме равенства и неравенства, можем судить также и о некотором порядке между полученными числами: если одному респонденту приписано число 3, а другому - 5, то считаем, что первый меньше удовлетворен работой, чем второй. Но соотношения типа 5-4=2-1 остаются бессмысленными с содержательной точки зрения. Это - порядковая шкала. ЭСО в данном случае содержит два отношения - равенства и порядка.

Совокупность эмпирических отношений, отражаемых с помощью интервальной шкалы, богаче, она дает возможность отразить еще и порядок расстояний между шкалируемыми объектами.

Предположим, например, что мы измерили отношение студентов к учебе и в результате получили, что четырем респондентам А, Б, В и Показались приписанными соответственно числа 1, 2, 3 и 8. Если мы знаем, что была использована порядковая шкала, то, интерпретируя результаты измерения, можно быть уверенными только в том, что респондент А хуже всех относится к учебе, респондент Б - получше и т.д. При использовании же интервальной шкалы мы можем получить дополнительную информацию: различие по отношению к учебе между респондентами А и Б меньше, чем различие между респондентами В и Г. А такого рода сведения весьма полезны.

Итак, если мы получаем числа, для которых "физически" осмыслены равенства типа 5-4=2-1 или 8 - 3 > 3 - 2, то считаем, что они отвечают интервальной шкале. Эта шкала обычно считается "хорошей" в том смысле, что соответствующие шкальные значения в достаточной мере похожи на обычные числа (вопрос о смысле "похожести" часто даже не ставится; одна из наших задач - уточнить его). По интервальным шкалам обычно считают полученными значения таких признаков, как возраст или зарплата. ЭСО в данном случае содержит отношения равенства и порядка как для объектов, так и для расстояний между объектами.

Интервальные шкалы часто называют шкалами высокого типа, количественными, числовыми. Номинальные же и порядковые шкалы - шкалами низкого типа, качественными, нечисловыми (мы негативно относимся к такому использованию терминов "качественный" и "количественный", что ниже попытаемся обосновать). Смысл таких определений очевиден: числа, полученные с помощью шкал высокого типа, больше похожи на те числа, которые знакомы каждому из нас со школьной скамьи.

Будем считать интуитивно ясным понятие признака (синонимы: переменная, характеристика, параметр, величина; примеры: пол, возраст, удовлетворенность респондента работой) и его значения (синонимы: градация, категория, альтернатива; примеры: мужчина, 25 лет, совершенно не удовлетворен работой).

Переменную, значения которой нельзя получить сразу, задав, скажем, определенный вопрос в анкете и получив соответствующий ответ респондента, будем называть латентной (скрытой). В противоположном случае будем говорить о наблюдаемой переменной. Процесс получения значений наблюдаемой переменной называется прямым измерением (в работе [Клигер и др., 1978] оно называется измерением при сборе данных).

Латентные переменные измеряются косвенным путем, с помощью определенных преобразований некоторых наблюдаемых, поддающихся адекватной интерпретации данных. (Представления о том, какой вид эти данные имеют и как они должны преобразовываться, должны опираться на определенные теоретические исследовательские концепции, априорные модельные представления социолога. Обсуждение этих представлений станет ключевым моментом в дальнейшем изложении.)

Отметим, что только что введенное определение латентной переменной несколько расходится с тем, что под таковой часто понимают социологи. Мы имеем в виду ситуацию, когда латентной называют переменную, относительно которой заранее неизвестно не только то, как ее измерить, но и то, что она из себя представляет: исследователь догадывается, что наблюдаемое поведение респондента (чаще всего - ответы на вопросы предложенной ему анкеты) объясняется действием одной или нескольких скрытых переменных, но не может априори дать им название. Приведенное же выше определение предполагает, что исследователь вполне может заранее знать, какая латентная переменная его интересует. Латентность же ее заключается в том, что ее измерение осуществляется не в процессе сбора данных, а в процессе анализа некой первичной информации. Другими словами, мы называем латентной переменную, значения которой получаются в результате так называемого производного измерения (в работе [Клигер и др., 1978] оно называется измерением при анализе данных). Коротко поясним, почему мы прибегли к такому определению.

С нашей точки зрения, в социологии между указанными двумя ситуациями нет непреодолимой пропасти. Для социолога любая переменная, находящаяся в результате производного измерения, всегда в той или иной мере является латентной: исследователь практически никогда не может быть уверен, что предположение о самом существовании этой переменной адекватно моделирует ситуацию, что наблюдаемое поведение отражает именно то, что интересует исследователя, и т.д. И продвинутые способы измерения всегда дают возможность пересмотра социологом наименования переменной или вообще отказа от убежденности в ее существовании.

Говоря о комплексе вопросов, связанных с измерением латентной переменной, будем использовать также терминологию, касающуюся операционализации понятий. Представляется очевидным родство соответствующих проблем: латентная переменная часто отвечает трудно измеримому или смутно очерчиваемому заранее понятию, наблюдаемые признаки - результату его операционализации.

Основой модельных представлений, заложенных в известных методах шкалирования, является сопоставление с каждой измеряемой переменной (в том числе латентной) некоторой протяженности, психологического континуума - прямой линии (числовой прямой, числовой оси), на которой мы размещаем те объекты, которым в результате измерения должны приписать числа (термин "континуум" означает непрерывность). Это предположение является естественным, в его целесообразности не сомневается ни один социолог, но в нем имеются свои "подводные камни".

Так, на практике исследователь иногда забывает о том, что, приписывая числа объектам, т.е. размещая их на указанной прямой, он, как правило, не определяет место размещения объекта однозначно, не "прибивает гвоздями" объект к оси. "Числа", используемые социологом, заданы не однозначно, а как бы "плавают" на оси. Например, как нетрудно проверить, для определенных выше типов шкал эквивалентными являются совокупности шкальных значений, представленные в табл.

 

Таблица. Свойства шкал рассматриваемых типов

 

Тип шкалы

Отношения, сохраняющиеся при отображении ЭСО в ЧСО

Пример эквивалентных совокупностей шкальных значений

Номинальная

 а= Ь

1 2 3 4 5 10 31 2 5 118

Порядковая

 а = Ь, а > Ь

1 2 3 4 5 10 31 44 100 118

Интервальная

 а = Ь, а > Ь

 а- Ь= с - d

 а - Ь > с - d

1 2 3 4 5 10 31 52 73 94


 

 

Действительно, если нас интересуют только эмпирические отношения равенства - неравенства, скажем, если мы измеряем профессию, безразлично, какими цифрами зашифровать наши объекты: с точки зрения смысла решаемой задачи совершенно безразлично, припишем ли мы токарю - 1, пекарю - 2, лекарю - 3, либо же токарю - 10, пекарю - 31, а лекарю - 2. Требуется лишь, чтобы всем токарям было приписано одно и то же число, чтобы это число не совпадало с числом, приписанным пекарям, и т.д. А вот если мы ставим своей целью сохранить в числах некое эмпирическое отношение порядка, то тут уже набор чисел во второй строке не будет эквивалентен набору 1, 2, 3, 4, 5, поскольку эти наборы отражают разный порядок. Если же мы учитываем порядок расположения по величине неких эмпирических интервалов между рассматриваемыми объектами, то набору 1, 2, 3, 4, 5 может быть эквивалентен только такой набор, в котором интервалы между последовательными числами равны. В подобных соображениях выражается нечисловая сущность наших шкальных значений. И это положение принципиально. Оно вытекает из сути той роли, которую играет число в социологии. На это обстоятельство мы будем обращать особое внимание.

Каждый социолог в наше время знает, что используемые им "числа", отвечающие, скажем, номинальной и порядковой шкале, на самом деле не являются обычными числами (хотя бы потому, что с ними нельзя обращаться как с таковыми), но нечисловой характер данных обычно не ассоциируется с неоднозначностью используемых шкальных значений, в то время как такая ассоциация представляется естественной.

Отметим, что хотя шкальные значения, полученные по интервальной шкале, в значительной мере можно считать похожими на обычные действительные числа с точки зрения возможностей дальнейшей работы с ними (к ним применимо значительное количество традиционных числовых математических методов), все же и они не являются числами в привычном школьном смысле этого слова, поскольку они тоже определены не однозначно, а лишь с точностью до преобразований, сохраняющих структуру интервалов между исходными числами.

 

Вопросы домашнего задания:

 

  1. Что такое шкала?
  2. Как Вы понимаете выражение: "Совокупность шкальных значений является моделью реальности"?
  3. Что лежит в основе определения типа шкалы?
  4. Каковы основные типы используемых в социологии шкал? В чем состоят трудности построения интервальной шкалы?
  5. Каковы преимущества номинальной шкалы перед интервальной?

 

 

Рекомендуемая литература:

 

1. Толстова Ю.Н. Измерение  в социологии. М., 2007 С.40-43.

 

 

Задание для самостоятельного изучения

Роль математического языка в процессе шкалирования. Установочные и оценочные шкалы.

 

Вопросы для самопроверки:

  1. Какую роль играет математический язык в процессе шкалирования?
  2. Каковы особенности установочной шкалы?
  3. Каковы особенности оценочной шкалы?

 

Рекомендуемая литература:

 

1. Толстова Ю.Н. Измерение  в социологии. М., 2007 С.33-37.

 


Информация о работе Основные типы шкал