Организация как самоорганизация и саморазвивающаяся система

Автор работы: Пользователь скрыл имя, 11 Сентября 2011 в 16:19, курсовая работа

Описание работы

Классическое и неклассическое естествознание объединяет одна общая черта: их предмет познания — это простые (замкнутые, изолированные, обратимые во времени) системы. Однако такое понимание предмета познания является сильной абстракцией. Вселенная представляет собой множество систем. Но лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как “механизмы”. Во Вселенной таких “закрытых” систем меньшая часть. Подавляющее большинство реальных систем открытые. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой. К такого рода системам относятся биологические и социальные системы, которые больше всего интересуют человека.

Содержание работы

В чем заключается и как работает механизм самоорганизации?
По каким критериям и параметрам нужно оценивать эффективность организации?
Организационная культура как организующее, координируещее и направляющее начало в социальной системе
Принципы, технологии и методы внедрения тайм-менеджмента в организации.

Файлы: 1 файл

Samomanegement.doc

— 504.50 Кб (Скачать файл)

     Министерство  образования и науки, молодежи и  спорта Украины

     ВУЗ «Национальный горный университет»

     Факультет менеджмента

     Кафедра менеджмента

     производственной  сферы

 
 
 
 
 
 
 
 
 

     Индивидуальное  задание

     на  тему: «Организация как самоорганизация и саморазвивающаяся система»                        

     по  дисциплине:  «Самоменеджмент в социальной системе»

                                        

                            
 

                                   Выполнила:

                                       ст. гр. ЕМ-08-1

                                                                       Кудрявцева Татьяна Викторовна

                                    

                               Проверил:

                                            асс. Моисеев А.С. 
 

       
 
 
 
 
 
 
 
 
 

Днепропетровск

                                                           2011

     ПЛАН 

     
  1. В чем заключается и как работает механизм самоорганизации?
  2. По каким критериям и параметрам нужно оценивать эффективность организации?
  3. Организационная культура как организующее, координируещее и направляющее начало в социальной системе
  4. Принципы, технологии и методы внедрения тайм-менеджмента в организации.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. В чем заключается  и как работает механизм самоорганизации?
 

     От  моделирования простых  систем к моделированию сложных

     Классическое  и неклассическое естествознание объединяет одна общая черта: их предмет познания — это простые (замкнутые, изолированные, обратимые во времени) системы. Однако такое понимание предмета познания является сильной абстракцией. Вселенная представляет собой множество систем. Но лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как “механизмы”. Во Вселенной таких “закрытых” систем меньшая часть. Подавляющее большинство реальных систем открытые. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой. К такого рода системам относятся биологические и социальные системы, которые больше всего интересуют человека.

     В 70-е гг. XX в. начала активно развиваться  теория сложных самоорганизующихся систем. Результаты исследований в области нелинейного (порядка выше второго) математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании — синергетики. Как и кибернетика, синергетика — это некоторый междисциплинарный подход. В отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения. Основной вопрос синергетики — существуют ли общие закономерности, управляющие возникновением (самоорганизующихся систем, их структур и функций.

     Определение, данное Г. Хакеном в 1980-е гг. в рамках синергетики:

     «Самоорганизация — процесс упорядочения (пространственного, временного или пространственно-временного) в открытой системе, за счёт согласованного взаимодействия множества элементов её составляющих».

     В настоящее время синонимами термина  самоорганизации являются, помимо общей  теории эволюции в биологии, – тектология А.А. Богданова, общая теория систем У.Р. Эшби, синергетика Г.Хакена, диссипативные  структуры И. Пригожина, универсальный эволюционизм Н.Н.Моисеева, автопоэзис У.Матураны и Ф. Варелы, гиперцикл М. Эйгена, эволюционная концепция развития вселенной Э.Янча, единая трансдисциплинарная теория Э.Ласло, теория самоорганизации А.А. Самарского и С.П. Курдюмова, основанная на базе режимов с обострениями решений дифференциальных уравнений, теория самоорганизованной критичности П.Бэка, сетевая, бутстрапная теория Ф. Капры. Комбинации различных идей и подходов концепции самоорганизации формируют ядро так называемых наук о жизни ( life sciences – англ.), которое известно также как теория сложности ( science of complexity – англ.). Вплотную к этим наукам примыкают теория детерминированного хаоса (chaos theory – англ.) и фрактальная геометрия природы Б. Мандельброта (fractal geometry of Nature- англ.)

     Ключевыми терминами теории самоорганизации, составляющими ее базовый словарь, таким образом можно считать  следующие: естественность, целостность, всеобщая взаимосвязь, открытые системы, нелинейность, неравновесность, самоприменимость, бифуркационность, эмерджентость (спонтанность), амбивалентность.

     Характеристики  системы:

  • открытая (наличие обмена энергией/веществом с окружающей средой);
  • содержит неограниченно большое число элементов (подсистем);
  • имеется стационарный устойчивый режим системы, в котором элементы взаимодействуют хаотически (некогерентно).

     Характеристики  процесса:

  • интенсивный обмен энергией/веществом с окружающей средой, причём совершенно хаотически (не вызывая упорядочение в системе);
  • макроскопическое поведение системы описывается несколькими величинами — параметром порядка и управляющими параметрами (исчезает информационная перегруженность системы);
  • имеется некоторое критическое значение управляющего параметра (связанного с поступлением энергии/вещества), при котором система спонтанно переходит в новое упорядоченное состояние (переход к сильному неравновесию);
  • новое состояние обусловлено согласованным (когерентным) поведением элементов системы, эффект упорядочения обнаруживается только на макроскопическом уровне;
  • новое состояние существует только при безостановочном потоке энергии/вещества в систему. При увеличении интенсивности обмена система проходит через ряд следующих критических переходов; в результате структура усложняется вплоть до возникновения турбулентного хаоса.

     Синергетика объясняет процесс  самоорганизации  в сложных системах следующим образом:

  1. Система должна быть открытой. Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции.
  2. Открытая система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия сколь угодно сложная система обладает максимальной энтропией и не способна к какой-либо самоорганизации. В положении, близком к равновесию и без достаточного притока энергии извне, любая система со временем ещё более приблизится к равновесию и перестанет изменять своё состояние.
  3. Фундаментальным принципом самоорганизации служит возникновение нового порядка и усложнение систем через флуктуации (случайные отклонения) состояний их элементов и подсистем. Такие флуктуации обычно подавляются во всех динамически стабильных и адаптивных системах за счёт отрицательных обратных связей, обеспечивающих сохранение структуры и близкого к равновесию состояния системы. Но в более сложных открытых системах, благодаря притоку энергии извне и усилению неравновесности, отклонения со временем возрастают, накапливаются, вызывают эффект коллективного поведения элементов и подсистем и, в конце концов, приводят к «расшатыванию» прежнего порядка и через относительно кратковременное хаотическое состояние системы приводят либо к разрушению прежней структуры, либо к возникновению нового порядка. Поскольку флуктуации носят случайный характер, то состояние системы после бифуркации обусловлено действием суммы случайных факторов.
  4. Самоорганизация, имеющая своим исходом образование через этап хаоса нового порядка или новых структур, может произойти лишь в системах достаточного уровня сложности, обладающих определённым количеством взаимодействующих между собой элементов, имеющих некоторые критические параметры связи и относительно высокие значения вероятностей своих флуктуаций. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации. Недостаточно сложные системы не способны ни к спонтанной адаптации ни, тем более, к развитию и при получении извне чрезмерного количества энергии теряют свою структуру и необратимо разрушаются.
  5. Этап самоорганизации наступает только в случае преобладания положительных обратных связей, действующих в открытой системе, над отрицательными обратными связями. Функционирование динамически стабильных, неэволюционирующих, но адаптивных систем — а это и гомеостаз в живых организмах и автоматические устройства — основывается на получении обратных сигналов от рецепторов или датчиков относительно положения системы и последующей корректировки этого положения к исходному состоянию исполнительными механизмами. В самоорганизующейся, в эволюционирующей системе возникшие изменения не устраняются, а накапливаются и усиливаются вследствие общей положительной реактивности системы, что может привести к возникновению нового порядка и новых структур, образованных из элементов прежней, разрушенной системы.
  6. Самоорганизация в сложных системах, переходы от одних структур к другим, возникновение новых уровней организации материи сопровождаются нарушением симметрии. При описании эволюционных процессов необходимо отказаться от симметрии времени, характерной для полностью детерминированных и обратимых процессов в классической механике. Самоорганизация в сложных и открытых — диссипативных системах, к которым относится и жизнь, и разум, приводят к необратимому разрушению старых и к возникновению новых структур и систем, что наряду с явлением неубывания энтропии в закрытых системах обуславливает наличие «стрелы времени» в Природе.

     Характеристики  самоорганизующихся систем

     Предметом синергетики являются сложные самоорганизующиеся системы. Современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, — систем, способных к самоорганизации, саморазвитию.

     Основные  свойства самоорганизующихся систем —  открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми, нелинейными диссипативными системами, далекими от равновесия.

     Открытость

     Объект  изучения классической термодинамики  — закрыгые системы, т.е. системы, которые  не обмениваются со средой веществом, энергией и информацией. Напомним, что  центральным понятием термодинамики является понятие энтропии. Оно относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой Г. Изменение энтропии определяется формулой: dE= dQ/T, где dQ - количество теплоты, обратимо подведенное к системе или отведенное от нее.

     Именно  по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом, в закрытой системе энергия сохраняется, хотя и может приобретать различные  формы. Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно второму началу термодинамики, запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к “тепловой смерти”. Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.

     Вместе  с тем уже во второй половине XIX в. и особенно в XX в. биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к понижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее в противоположном направлении — от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. И только с переходом естествознания к изучению открытых систем появилась такая возможность.

     Открытые  системы — это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы — это системы необратимые; в них важным оказывается фактор времени.

     В открытых системах ключевую роль — наряду с закономерным и необходимым — могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается.

     Нелинейность

     Но  если большинство систем Вселенной  носит открытый характер, то это значит, что во Вселенной доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Неравновесность, в свою очередь, порождает избирательность системы, ее необычные реакции на внешние воздействия среды. Неравновесные системы имеют способность воспринимать различия во внешней среде и “учитывать” их в своем функционировании. Так, некоторые более слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда совместные действия причин А и В вызывают эффекты, которые не имеют ничего общего с результатами воздействия А и В по отдельности.

     Процессы, происходящие в нелинейных системах, часто носят пороговый характер — при плавном изменении внешних  условий поведение системы изменяется скачком. Другими словами, в состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих ее радикальному качественному изменению

     Нелинейные  системы, являясь неравновесными и  открытыми, сами создают и поддерживают неоднородности в среде. В таких  условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые в свою очередь обусловливают изменения в самой этой системе (например, в ходе химической реакции или какою-то другою процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными. 
 
 

Информация о работе Организация как самоорганизация и саморазвивающаяся система