Математика в жизни общества

Автор работы: Пользователь скрыл имя, 03 Января 2011 в 13:17, реферат

Описание работы

Целью данного реферата является рассмотрение и изучение роли математики в жизни общества.

Содержание работы

ВВЕДЕНИЕ
I. МАТЕМАТИКА В СИСТЕМЕ ЗНАНИЙ
II. СОВРЕМЕННАЯ МАТЕМАТИКА И СТИЛЬ НАУЧНОГО МЫШЛЕНИЯ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ

Файлы: 1 файл

Математика в жизни общества.doc

— 82.50 Кб (Скачать файл)

     Вторая сторона математизации мышления состоит в том стремлении, которое теперь наблюдается, — выводить из строго сформулированных начальных положений логические следствия и затем эти следствия подвергать непосредственному наблюдению. При этом особую ценность приобретают те теоретические построения, которые позволяют привлечь к получению логических заключений разнообразный аппарат дедуктивной математики. При этом удается воспользоваться огромным объемом уже полученных математикой выводов. Этим пользуются в математике уже давно.

     Почти два столетия назад возникла математическая физика, которая на базе основных положений, выведенных из наблюдения и опыта, получает обширные следствия математическим путем. Так развивались геометрическая и волновая оптика, так шло развитие акустики и электродинамики. В еще большей мере этот путь оправдал себя в современной физике, имеющей дело с атомными и субатомными явлениями. Математическая теория приводила к выводам, согласно которым должны существовать ранее ненаблюдавшиеся элементы материи. Эти выводы сравнивались с результатами наблюдений, и эти сравнения приводили к интересным и важным следствиям: подсчету величин массы и заряда частицы; ее взаимосвязей с ранее наблюдавшимися частицами и т. д. Иногда проходили годы, прежде чем удавалось подтвердить выводы математической теории экспериментально. Современная физика полна такими математическими предвычислениями реальных явлений, о которых не было известно ничего и которые позднее были обнаружены путем сложных экспериментов, специально продуманных на основе математической теории.

     Нетрудно  привести многочисленные примеры того, как математический стиль мышления приносил пользу в других областях знания — биологии, экономике, организации производства. Вспомним, для примера, что электротехника и радиотехника излагаются как математические дисциплины и используют разнообразный и весьма сложный математический аппарат. Это полностью себя оправдывает, поскольку позволяет производить своевременно расчеты, прогнозировать течение процессов, получать возможность управления процессами.

     Мы  говорили о том, что качество любой  теории реальных явлений проверяется практикой и постановкой соответствующим образом организованных экспериментов. Однако математика вмешалась и в вопросы организации самого эксперимента: как следует организовать наблюдения, чтобы извлечь при том же количестве испытаний максимум информации? Эта проблема важна, поскольку на испытания в промышленности, на эксперимент в научных лабораториях и конструкторских бюро затрачиваются теперь огромные материальные средства и человеческие усилия.

     Сейчас  уже созданы основы математической теории эксперимента, которая позволяет значительно сокращать число необходимых наблюдений, их стоимость и длительность для получения обоснованных выводов. Порой этот выигрыш весьма велик — в десятки раз (по стоимости я затраченным усилиям). Основная идея, которая при этом используется, состоит в том, чтобы учитывать результат предшествующих испытаний и производить каждое последующее испытание так, чтобы оно уточняло уже полученные сведения.

     Появление ЭВМ изменило отношение людей  к возможностям математики при решении жизненных вопросов. Оказалось, что на машины можно переложить не только производство громоздких вычислительных работ, но и осуществление логических выводов. Но для того, чтобы это стало возможным, требуется предварительно составить логико-математическую модель явления или процесса, выявить связи и имеющиеся количественные соотношения. Иными словами, нужно подвергнуть процесс предварительному математическому и логическому анализу. Перед человечеством открылся новый, очень мощный метод исследования, нашедший почти немедленно широчайшее применение в самых разнообразных областях знания, как в науке, так и в непосредственной практике. В результате множество лиц, ранее скептически относившихся к возможностям математики, стали приверженцами ее использования и с увлечением стали применять математический стиль мышления, математические методы к интересующим их проблемам.

     Наличие математических машин к тому же позволяет в фантастически короткие сроки осуществлять грандиозные вычисления, еще совсем недавно недоступные прежним средствам вычислительной техники. Трудности вычислений переместились в вопросы создания соответствующих языков программирования, в составление программ вычислений, в создание приемов автоматического выбора нужной программы самой машиной, разработки теории ошибок массовых вычислений и т. д. Математика же и математики освободились от необходимости производства многочисленных элементарных чисто технических операций.

     Но  одновременно на специалистов легла  более сложная и интересная совокупность работ: составление моделей, разработка приемов общения человека с машиной, изучение возможности автоматического сбора экспериментальных данных и их обработки и т. д. Весьма существенно обогатилась проблематика математических исследований. Так изменение стиля научного мышления в сторону его математизации заставило прогрессировать саму математику, значительно расширять арсенал ее орудий и методов исследования разнообразных явлений окружающего нас мира.

 

      ЗАКЛЮЧЕНИЕ

 

     В заключении подведем основные итоги  реферата.

     Поскольку математика представляет по своей природе  всеобщее и абстрактное знание, она в принципе может и должна использоваться во всех отраслях науки. Математику можно отнести к всеобщим наукам. В самом деле, она считается всеобщей и абстрактной наукой, поскольку математический аппарат в принципе может использоваться и практически используется во всех без исключения областях знания. Задача математики состоит в описании того или иного процесса с помощью какого-либо математического аппарата, то есть формально-логическим способом. Говоря о предмете и функциях математики, очевидно, что в современной науке все более ощутимой становится интегрирующая роль математики, поскольку она является всеобщей научной дисциплиной. Функции математики в равной мере являются функциями гуманитарными, поскольку направлены на совершенствование материальной и духовной сфер человеческого бытия.

     При изучении математики осуществляется развитие интеллекта школьника, обогащение его методами отбора и анализа информации. Преподавание любого раздела математики благотворно сказывается на умственном развитии учащихся, поскольку прививает им навыки ясного логического мышления, оперирующего четко определенными понятиями.

     Математика  содержит в себе черты волевой  деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы - логика и интуиция, анализ и конструкция, общность и конкретность.

     Изучение  математики также способствует формированию гражданских качеств личности посредством  воспитания свойства, которое мы называем интеллектуальной честностью, благотворно сказывается на умственном, нравственном и эстетическом развитии учащихся.

     Одновременно  воспитываются волевые качества личности, без которых невозможно овладение научной теорией, формируются навыки самостоятельной исследовательской работы, наконец, воспитывается интеллектуальная честность, которая не позволяет оперировать сомнительными, не доказанными со всей необходимой строгостью фактами. Причем это относится не только к решению математических задач, но и к другим областям человеческой деятельности, в том числе и к анализу явлений общественно-политической жизни. Математическое образование из внешнего по отношению к ученику процесса обучения трансформируется в собственно познавательный процесс. Только совместные действия этих полярных начал и борьба за их синтез обеспечивают жизненность, полезность и высокую ценность математической науки.

     Учитывая  внутреннее логическое единство математики, органическую взаимосвязь ее частей, важнейшим требованием к организации  ее преподавания должны стать последовательность и преемственность в обучении, видение на всех его этапах основной цели. Этой целью является накопление специальных знаний, овладение приемами постановки и решения математических задач и на их базе развитие интеллекта учащихся, формирование у них культуры мышления, воспитание волевых качеств личности, умения преодолевать трудности, эстетическое развитие, базирующееся на способности оценить красоту научных построений и радости от обретения нового знания.

     Таким образом, математика своими специфическими средствами способствует решению целого комплекса гуманитарных задач и имеет большое значение в жизни общества.

     Нет сомнений, что математика и математический стиль мышления совершают сейчас триумфальный марш как в науке, так  и в ее применениях. Учащиеся, студенты должны в какой-то мере почувствовать это и относиться к математике с большим интересом, увлечением и пониманием необходимости математических знаний, как для будущей их деятельности, так и для жизни человеческого общества.

 

      СПИСОК ЛИТЕРАТУРЫ

 
  1. Б.В. Гнеденко Математика в современном мире. – М.: Просвещение, 1990г. – 128 с.
  2. Е.А. Беляев, В.Я. Перминов «Философские и методологические проблемы математики», МГУ, 1981, - 214 с.
  3. Н.И. Жуков «Философские проблемы математики», Минск, 1977, -95 с.
  4. Непостижимая эффективность математики в естественных науках:— 1991, № 10, с. 23.

Информация о работе Математика в жизни общества