Автор работы: Пользователь скрыл имя, 31 Марта 2012 в 18:14, реферат
Цель данной работы – попытаться на доступном уровне определить существо синергетики, как нового направления современной научной мысли и очертить круг исследуемых ею вопросов с позиции неискушенного разума молодого аспиранта. Ссылка на неискушенность существенна, и вот почему. Литература по вопросу, как уже упоминалось выше, обширна.
Сейчас предмет изучения науки – мир, для которого характерны кризисы и обвальные процессы, все чаще встречающиеся в нашей повседневной жизни; мир неустойчивостей, когда малые и локальные изменения влекут за собой глобальные последствия; мир, в котором идут процессы становления и возникновения порядка из хаоса; мир, в котором чередующиеся этапы предопределенности и непредсказуемости образуют причудливую череду событий, которые нас окружают и частью которых мы являемся.
Неустойчивые модели долгое время считались некорректными и “изгонялись” из науки. Отражением этого стала точка зрения Ж. Адамара, французского математика, сформулирован ная им в начале XX века. Вдохновленный успехами математической физики в точном описании явлений реального мира, он ввел понятие корректной задачи как задачи, для которой решение существует, единственно и устойчиво. Задачи, для которых не выполнено хотя бы одно из этих требований, он считал неинтересными для практики.
Однако жизнь показала, что неустойчивость – необходимый атрибут нашего мира. Тем интереснее точка зрения Анри Пуанкаре, соотечественника и современника Адамара. Роберт Гилмор, автор книги “Catastrophe Theory for Scientists and Engineers”, пишет: “Основы современного подхода к определению качественных изменений в поведении решений обыкновенных дифференциальных уравнений были заложены почти 100 лет назад Пуанкаре... Эти работы... значительно опередили свое время. Сам Пуанкаре не смог реализовать намеченную им исследовательскую программу, так как был уже тяжело болен, а из его современников только А. Ляпунов следовал этой программе при изучении критических решений уравнений. После Ляпунова работы по теории бифуркаций практически прекратились... Такая ситуация сохранилась до 30-х годов, пока советские математики А. Андронов и Л. Понтрягин... вновь не обратились к идеям Пуанкаре. Особое оживление в этой области наблюдалось в 1950-67 гг.”
Глобальность изменений во взглядах на мир и на его описание математическими моделями характеризует следующий исторический факт. В 60-х годах XX века сэр Джон Лайтхил, президент Международной ассоциации математических исследований, посчитал своим долгом принести извинение просвещенному сообществу за то, что в течение 300 лет математики вводили человечество в заблуждение, так как концепция абсолютного детерминизма оказалась далеко не безусловной.
Илья Пригожин, лауреат Нобелевской премии, создатель неравновесной термодинами ки, утверждает: “Покуда мы требовали, чтобы все динамические системы подчинялись одним и тем же законам, хаос был препятствием к пониманию. В замкнутом мире классической рациональности поиск знания легко мог приводить к интеллектуальному снобизму и высокомерию. В открытом мире, который мы сейчас учимся описывать, теоретическое знание и практическая мудрость нуждаются друг в друге”.
Теория нелинейных систем – математическая дисциплина, и сама по себе она не может ни предотвратить резкое ухудшение обстановки, ни обеспечить быстрый выход из застоя. Но, как любая теория, она позволяет глубже вникнуть в суть вещей, явлений и процессов реального мира. С точки зрения математики катастрофа и хаос – вовсе не обязательно крушение всех надежд или еще какая-нибудь беда. Это резкая перестройка системы, качественный скачок ее состояния: неожиданный поворот жизненного пути, социальная революция, экономический бум. И важно в преддверии этих кризисных ситуаций найти нужный путь, не дающий “застрять” в кризисе. Помогают в этом знаки судьбы – “флаги катастроф”, предупреждающие умеющего их читать, что пришел подходящий момент для головокружительного прыжка вверх. А если упустить момент, то будут тянуться перед тобой глухие кривые окольные тропы...
Для наглядности рассмотрим биологическую трактовку этого уравнения: изолированно живет популяция особей нормированной численностью Xn . Через год появляется потомство численностью Xn+1. Рост популяции описывается первым членом правой части уравнения — CXn где коэффициент с определяет скорость роста и является определяющим параметром. Убыль (за счет перенаселенности, недостатка пищи и т.п.) определяется вторым, нелинейным членом — (CXn)^2. Зависимость численности популяции от параметра с приведена на рисунке.
Линии показывают значения Xn при больших n.
При с < 1 популяция с ростом n вымирает.
В области 1 < с < 3 численность популяции приближается к постоянному значению X0=1-1/C . Это область стационарных решений.
Затем в диапазоне 3 < с < 3.57 появляются бифуркации, разветвление кривых на две. Численность популяции колеблется между двумя значениями, лежащими на этих ветвях. Сначала популяция резко возрастает, на следующий год возникает перенаселенность и через год численность снова становится малой. Далее происходит перекрывание областей различных решений, и поведение системы становится хаотическим. Динамические переменные Xn принимают значения сильно зависящие от начальных. При расчетах на компьютере для близких начальных значений с решения могут резко отличаться. Более того, расчеты становятся некорректными, так как начинают зависеть от случайных процессов в самом компьютере. М.Фейгенбаум установил универсальные закономерности перехода к динамическому хаосу при удвоении периода, которые были экспериментально подтверждены для широкого класса механических, гидродинамических, химических и т.д. систем. Наряду с последовательностями удвоений периода (каскадами Фейгенбаума) имеются другие пути перехода к хаосу, когда, например, длительные периоды упорядоченного движения чередуются со вспышками беспорядка.
Когда мы говорим о молодой науке, естественно спросить: почему ее не было раньше, что привело к ее возникновению, чем отличается взгляд на мир этой науки от представлений, выработанных раньше? Попробуем ответить на эти вопросы.
Наверное, вы не раз задумывались над поразительным отличием систем, существующих в природе, от тех, что созданы человеком. Для первых характерны устойчивость относительно внешних воздействий, самообновляемость, возможность к самоусложнению, росту, развитию, согласованность всех составных частей. Для вторых – резкое ухудшение функционирования даже при сравнительно небольшом изменении внешних воздействий или ошибках в управлении. Сам собой напрашивается вывод: нужно позаимствовать опыт построения организации, накопленный природой, и использовать его в нашей деятельности. Отсюда вытекает одна из задач синергетики – выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновении, развитии и самоусложнении.
При решении задач в самых разных областях от физики и химии до экономики и экологии, создание и сохранение организации, формирование упорядоченности является либо целью деятельности, либо ее важным этапом. Приведем два примера. Первый – задачи, связанные с управляемым термоядерным синтезом. В большинстве проектов самый важный момент – создание необходимой пространственной или пространственно-временной упорядоченности.
Другой пример – формирование научных коллективов, где активная творческая работа большинства сотрудников должна сочетаться с возможностью совместно решать крупные задачи. Такой коллектив должен быть устойчив и быстро реагировать на все новое. Какова оптимальная организация, позволяющая добиваться этого?
Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем – энергетических, экологических, многих других, требующих привлечения огромных ресурсов. Здесь нет возможности искать ответ методом проб и ошибок, а «навязать» системе необходимое поведение очень трудно. Гораздо разумнее действовать, опираясь на знание внутренних свойств системы, законов ее развития. В такой ситуации значение законов самоорганизации, формирования упорядоченности в физических, биологических и других системах трудно переоценить.
Другая причина, обусловившая создание синергетики, – необходимость при решении ряда задач науки и техники анализировать сложные процессы различной природы, используя при этом новые математические методы.
Классическая математическая физика (т.е. наука об исследовании математических моделей физики) имела дело с линейными уравнениями. Формально это уравнения, в которые неизвестные входят только в первой степени. Реально они описывают процессы, идущие одинаково при разных внешних воздействиях. С увеличением интенсивности воздействий изменения остаются количественными, новых качеств не возникает. Область применения линейных уравнений необычайно широка. Она охватывает классическую и квантовую механику, электродинамику и теорию волн. Методы их решения, разрабатывавшиеся в течение столетий, обладают большой общностью и эффективностью.
Однако ученым все чаще приходится иметь дело с явлениями, где более интенсивные внешние воздействия приводят к качественно новому поведению системы. Здесь нужны нелинейные математические модели. Их анализ – дело гораздо более сложное, но при решении многих задач он необходим. Это приводит к формированию широкого фронта исследований нелинейных явлений, к попыткам создать общие подходы, применимые ко многим системам (к таким подходам относится и синергетика).
Современная наука все чаще формулирует свои закономерности, обращаясь к более богатому и сложному миру нелинейных математических моделей.
Новым инструментом изучения нелинейных моделей стал вычислительный эксперимент. Ученые получили возможность «проиграть» модель изучаемого процесса во многих вариантах, используя мощные ЭВМ. И что особенно важно – вычислительный эксперимент может привести к открытию новых явлений.
Широкое использование ЭВМ показало, что ни быстродействие вычислительных машин, ни рост объема расчетов не являются панацеей от всех бед, сами по себе они не дают понимания изучаемых нелинейных задач.
Нужны понятия, подходы, обобщения, которые отражают важнейшие общие черты исследуемых явлений и помогают построить их адекватные математические модели. Все это также стало мощным стимулом развития синергетики.
Взгляды, вырабатываемые современной наукой при решении многих задач, иногда оказываются созвучными размышлениям ученых и философов, живших много веков назад, в частности близкими к мыслям и воззрениям, характерным для философских течений Древнего Востока. Зачастую совпадает не только общий подход, но и конкретные детали. Возникает вопрос: почему синергетика, опирающаяся на достижения современной науки, на диалектико-материалистическое мировоззрение, приходит к выводам, сделанным тысячелетия назад?
Первая причина – общность предмета анализа. Изучаются сложные самоорганизующиеся системы, причем акцент делается на внутренние свойства как на источник саморазвития.
Вторая причина – новое отношение к проблеме целого и части. Для философских школ Древней Греции характерно предположение, что часть всегда проще целого, что, изучив каждую из частей, можно понять свойства целого. И естествознание – вплоть до последних десятилетий – этот подход вполне устраивал. Однако сначала общественные науки, а потом и точные пришли к выводу о необходимости целостного, системного анализа многих объектов.
Синергетика, как правило, имеет дело с процессами, где целое обладает свойствами, которых нет ни у одной из частей. Целое в таких системах отражает свойства частей, но и части отражают свойства целого. Здесь нельзя утверждать, что целое сложнее части, оно совсем другое.
Третье. Имея дело со сложными, жизненно важными для нас объектами (например, экологическими системами), приходится действовать предельно осторожно. Успех здесь возможен только в том случае, если мы знаем внутренние свойства системы. Отсюда стратегия – действие, сообразуемое с законами природы, разумная соразмерность с естественным ритмом, с постоянно меняющимися условиями.
Наверное, нетерпеливый читатель несколько разочарован: авторы никак не хотят просто и конкретно сказать, чем же занимается синергетика.
Нам кажется, здесь уместно вспомнить суждение Гегеля о том, что ни одно определение не кажется содержательным, пока не ясен смысл входящих в него понятий (для нас таким понятием является понятие структуры). Когда же смысл понят, определение становится просто ненужным. Ответ на вопрос, чем занимается синергетика, каков ее предмет и перспективы, неоднозначен.