Автор работы: Пользователь скрыл имя, 13 Декабря 2010 в 18:53, курсовая работа
Разработать АЦП поразрядного уравновешивания с устройством выборки хранения, автоматическим выбором пределов измерения, автоматической начальной предустановкой в исходное состояние и различными видами запуска (ручной, от внешнего генератора, от внутреннего генератора) со следующими характеристиками.
Техническое
задание.
Разработать
АЦП поразрядного уравновешивания
с устройством выборки
Спектр
входного сигнала приведен на рисунке
1.
Рисунок 1. Спектр входного сигнала.
Введение
В
большинстве современных
В связи с необходимостью создания устройств, связывающих цифровые вычислительные машины с объектами, использующими информацию в непрерывной (аналоговой) форме, потребовалось преобразование информации из аналоговой формы в цифровую и из цифровой в аналоговую.
Первую группу устройств называют аналого-цифровыми преобразователями (АЦП). Вторую – цифро-аналоговыми преобразователями (ЦАП).
Аналого-цифровые преобразователи (АЦП) применяются в измерительных системах и измерительно-вычислительных комплексах для согласования аналоговых источников измерительных сигналов с цифровыми устройствами обработки и представления результатов измерения[2].
Различным методам построения АЦП соответствуют устройства, различающиеся по точности, быстродействию, помехозащищённости, сложности реализации.
В курсовой работе рассмотрен принцип действия АЦП последовательного приближения. Также разработаны структурная и принципиальная схемы АЦП с характеристиками, определёнными в техническом задании, проведён расчёт основных узлов, анализ погрешностей разработанного АЦП.
Преобразователь этого типа, называемый в литературе также АЦП с поразрядным уравновешиванием, является наиболее распространенным вариантом последовательных АЦП.
В основе работы этого класса преобразователей лежит принцип дихотомии, т.е последовательного сравнения измеряемой величины с 1/2, 1/4, 1/8 и т.д. от возможного максимального значения ее. Это позволяет для N-разрядного АЦП последовательного приближения выполнить весь процесс преобразования за N последовательных шагов (итераций) вместо 2N-1 при использовании последовательного счета и получить существенный выигрыш в быстродействии. Так, уже при N=10 этот выигрыш достигает 100 раз и позволяет получить с помощью таких АЦП до 105...106 преобразований в секунду. В то же время статическая погрешность этого типа преобразователей, определяемая в основном используемым в нем ЦАП, может быть очень малой, что позволяет реализовать разрешающую способность до 18 двоичных разрядов.
Упрощенная
структура такого преобразователя
приведена на рисунке 1.1.
Рисунок 1.1. Упрощенная структура АЦП поразрядного уравновешивания.
2.1.
Расчет числа разрядов АЦП.
В результате равномерного квантования мгновенное значение непрерывной величины х представляют в виде конечного числа m ступеней квантования:
,
соответствующих определённым состояниям (уровни электрических потенциалов и т. п.) квантующего устройства с погрешностью квантования Δк, т. е. погрешностью, возникающей в результате отнесения значений измеряемой величины к ближайшему значению известной величины в процессе квантования. Максимально возможное значение погрешности квантования определяется значением ступени квантования, т. е.
.
Погрешность преобразования) цифрового измерительного устройства выражается в виде 2-членной формы представления:
,
где с и d – это безразмерные коэффициенты, выраженные в процентах ( даны в техническом задании), а хmax – предел измерения (для заданного диапазона изменения измеряемой величины это будет нормируемый основной предел 30 В).
Погрешность
квантования не должна превышать
общую погрешность
,
,
где δmax=с/100 (при х=хmax), т. е. δmax=0,05%.
Для
конкретного цифрового
,
где n – количество двоичных разрядов или разрядность АЦП.
Учитывая два последних выражения для шага квантования, можно записать:
.
Откуда разрядность АЦП определяется следующим образом:
Следовательно, число разрядов . Тогда шаг квантования можно найти:
,
.
2.2.
Расчет частоты дискретизации.
Частота дискретизации является одной из основных характеристик АЦП. Частоту дискретизации fд можно определить двумя способами:
1)
При проведении дискретизации
сигнала очень широко
Частота дискретизации определяется исходя из fв, где fв – верхняя частота ограниченного спектра входного сигнала.
Энергетически значимой в технике считается часть спектра, содержащая 95% всей энергии спектра, или 95% площади, перекрываемой спектром. По геометрическому построению спектра сигнала, данного в техническом задании, можно определить fв=137 кГц
Для
осуществления независимости
fд>Кз∙2∙fв
При преобразовании сигнала предполагается выпрямление его схемой двухполупериодного преобразователя средневыпрямленных значений. Это требует увеличить частоту дискретизации в 2 раза, так как спектр становится шире в 2 раза после прохождения сигналом подобной схемы.
Учитывая всё выше сказанное, получаем частоту дискретизации:
;
Возьмем частоту дискретизации КГц.
Тогда
время цикла дискретизации
.
2)
Непосредственное применение
.
Отсюда
можно найти частоту
.
Максимальное значение i-й производной стационарной случайной функции X(t) можно характеризовать неравенством С. Н. Бернштейна, которое справедливо для функций, ограниченных по модулю и имеющих спектральную плотность с верхней частотой wв=2πfв[6]:
.
Поэтому
выражение для частоты
.
Погрешность аппроксимации представляет собой ничто иное, как погрешность квантования, которую определяют из следующего выражения:
.
Тогда
можно найти частоту
,
.
При нахождении частоты дискретизации по Бернштейну обычно получается завышение требуемого значения до 10 – 14 раз. В нашем случае частота дискретизации по теореме Бернштейна в 13,6 раза превышает частоту дискретизации по теореме Котельникова, что указывает на верность расчета.
3. Проектирование структурной
1 – Входной буферный каскад
2 – Фильтр низких частот
3 – ПСЗ
4 – Устройство выборки хранения
5 – Устройство определения знака
6 – Сравнивающее устройство
7 – ЦАП
8 – РПП
9 – Блок выходных регистров
10 – Делитель частоты
11
– Внутренний генератор
12 – разъем источника питания.
4. Проектирование принципиальной
схемы АЦП
4.1.
Проектирование входного
Согласно
ТЗ входное сопротивление
Рисунок
4.1.1. Принципиальная схема входного
каскада разрабатываемого АЦП.
Коэффициент усиления входного каскада равен единице. В данной схеме используется операционный усилитель OP-37E.