Автор работы: Пользователь скрыл имя, 03 Февраля 2011 в 04:24, лекция
Употребляемые в обычной речи слова и словосочетания "не”, “и”, “или”, “если... , то”, “тогда и только тогда” и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.
1. Опадчий Ю.Ф. и др. Аналоговая и цифровая электроника. – М.: Радио и связь, 2002. – 768 с.
2. Степаненко И.П. Основы микроэлектроники: Учеб. пособие для вузов. – М.: Лаборатория Базовых Знаний, 2000. – 488 с.
3. Ермаков А. Е. Схемотехника ЭВМ. Учебное пособие. -М.: РГОТУПС, 1997. – 352 с.
5. Угрюмов Е.П. Цифровая схемотехника. BHV-Санкт-Петербург, 2004. – 528 с.
7. Разевиг
В. Д. Система
1. Прянишников В.А. Электроника: Курс лекций. – СПб.: КОРОНА принт, 1998. – 400 с.
2. Гусев В.Г., Гусев М.Ю. Электроника. – М.: Высш.шк. 1991. – 495 с.
3. Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство – М.: Мир. 1982. – 512 с.
4. Гершунский
Б.С. Основы электроники и
5. Хоровиц
П., Хилл У. Искусство
Тема. Логические основы схемотехники
Алгебра логики — это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.
Создателем алгебры логики является живший в ХIХ веке английский математик Джордж Буль, в честь которого эта алгебра названа булевой алгеброй высказываний.
Логическое высказывание — это любoе повествовательное пpедлoжение, в oтнoшении кoтopoгo мoжно oднoзначнo сказать, истиннo oнo или лoжнo.
Так, например, предложение “6 — четное число” следует считать высказыванием, так как оно истинное. Предложение “Рим — столица Франции” тоже высказывание, так как оно ложное.
Разумеется, не всякое предложение является логическим высказыванием. Высказываниями не являются, например, предложения “ученик десятого класса” и “информатика — интересный предмет”. Первое предложение ничего не утверждает об ученике, а второе использует слишком неопределённое понятие “интересный предмет”. Вопросительные и восклицательные предложения также не являются высказываниями, поскольку говорить об их истинности или ложности не имеет смысла.
Предложения типа “в городе A более миллиона жителей”, “у него голубые глаза” не являются высказываниями, так как для выяснения их истинности или ложности нужны дополнительные сведения: о каком конкретно городе или человеке идет речь. Такие предложения называются высказывательными формами.
Высказывательная форма — это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.
Алгебра
логики рассматривает любое
Употребляемые в обычной речи слова и словосочетания "не”, “и”, “или”, “если... , то”, “тогда и только тогда” и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.
Bысказывания,
образованные из других
Так, например, из элементарных высказываний “Петров — врач”, “Петров — шахматист” при помощи связки “и” можно получить составное высказывание “Петров — врач и шахматист”, понимаемое как “Петров — врач, хорошо играющий в шахматы”.
При помощи связки “или” из этих же высказываний можно получить составное высказывание “Петров — врач или шахматист”, понимаемое в алгебре логики как “Петров или врач, или шахматист, или и врач и шахматист одновременно”.
Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний.
Чтобы обращаться к логическим высказываниям, им назначают имена. Пусть через А обозначено высказывание “Тимур поедет летом на море”, а через В — высказывание “Тимур летом отправится в горы”. Тогда составное высказывание “Тимур летом побывает и на море, и в горах” можно кратко записать как А и В. Здесь “и” — логическая связка, А, В — логические переменные, которые мoгут принимать только два значения — “истина” или “ложь”, обозначаемые, соответственно, “1” и “0”
Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение:
(1) Операция, выражаемая словом “не”, называется отрицанием и обозначается чертой над высказыванием. Высказывание истинно, когда A ложно, и ложно, когда A истинно. Пример. “Луна — спутник Земли” (А); “Луна — не спутник Земли” ( ).
(2) Операция, выражаемая связкой “и”, называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением и обозначается точкой "•" (может также обозначаться знаком &). Высказывание А•В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание
“10 делится на 2 и 5 больше 3”
истинно, а высказывания
“10
делится на 2 и 5 не
больше 3”,
“10 не делится на 2 и 5
больше 3”,
“10 не делится на 2 и 5
не больше 3”
ложны.
(3) Операция, выражаемая связкой “или” (в неразделительном, неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны. Например, высказывание
“10 не делится на 2 или 5 не больше 3”
ложно, а высказывания
“10
делится на 2 или 5
больше 3”,
“10 делится на 2 или 5
не больше 3”,
“10 не делится на 2 или 5
больше 3”
истинны.
(4) Операция, выражаемая связками “если ..., то”, “из ... следует”, “... влечет ...”, называется импликацией (лат. implico — тесно связаны) и обозначается знаком ^. Высказывание А ^ В ложно тогда и только тогда, когда А истинно, а В — ложно.
Каким же образом импликация связывает два элементарных высказывания? Покажем это на примере высказываний: “данный четырёхугольник — квадрат” (А) и “около данного четырёхугольника можно описать окружность” (В). Рассмотрим составное высказывание А ^ В, понимаемое как “если данный четырёхугольник квадрат, то около него можно описать окружность”. Есть три варианта, когда высказывание А ^В истинно:
Ложен только один вариант: А истинно и В ложно, то есть данный четырёхугольник является квадратом, но около него нельзя описать окружность.
В обычной речи связка “если ..., то” описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Рассматривается только их истинность или ложность. Поэтому не надо смущаться “бессмысленностью” импликаций, образованных высказываниями, совершенно не связанными по содержанию. Например, такими:
“если
президент США
— демократ, то в
Африке водятся жирафы”,
“если арбуз — ягода,
то в бензоколонке есть
бензин”.
(5) Операция, выражаемая связками “тогда и только тогда”, "необходимо и достаточно”, “... равносильно ...”, называется эквиваленцией или двойной импликацией и обозначается знаком ~ . Высказывание А ~ В истинно тогда и только тогда, когда значения А и В совпадают.
Например, высказывания
“24
делится на 6 тогда и
только тогда, когда
24 делится на 3”,
“23 делится на 6 тогда
и только тогда, когда 23
делится на 3”
истинны, а высказывания
“24
делится на 6 тогда
и только тогда, когда 24
делится на 5”,
“21 делится на 6 тогда
и только тогда, когда 21
делится на 3”
ложны.
Высказывания А и В, образующие составное высказывание А ~ В, могут быть совершенно не связаны по содержанию, например: “три больше двух” (А), “пингвины живут в Антарктиде” (В). Отрицаниями этих высказываний являются высказывания “три не больше двух” ( ), “пингвины не живут в Антарктиде” ( ). Образованные из высказываний А, В составные высказывания A~B и ~ истинны, а высказывания A~ и ~B — ложны.
Итак, нами рассмотрены пять логических операций: отрицание, конъюнкция, дизъюнкция, импликация и эквиваленция.
Импликацию можно выразить через дизъюнкцию и отрицание:
А -> В =
Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:
А <-> В = (
Таким образом, операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.
Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (“не”), затем конъюнкция (“и”), после конъюнкции — дизъюнкция (“или”) и в последнюю очередь — импликация.
Логические формулы
С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой.
Определение логической формулы:
В п. 1 определены элементарные формулы; в п. 2 даны правила образования из любых данных формул новых формул.
В качестве примера рассмотрим высказывание “если я куплю яблоки или абрикосы, то приготовлю фруктовый пирог”. Это высказывание формализуется в виде (A v B) ^ C; такая же формула соответствует высказыванию “если Игорь знает английский или японский язык, то он получит место переводчика”.
Как показывает анализ формулы (A v B) ^ C , при определённых сочетаниях значений переменных A, B и C она принимает значение “истина”, а при некоторых других сочетаниях — значение “ложь” (разберите самостоятельно эти случаи). Такие формулы называются выполнимыми.
Некоторые формулы принимают значение “истина” при любых значениях истинности входящих в них переменных. Таковой будет, например, формула Аv , соответствующая высказыванию “Этот треугольник прямоугольный или косоугольный”. Эта формула истинна и тогда, когда треугольник прямоугольный, и тогда, когда треугольник не прямоугольный. Такие формулы называются тождественно истинными формулами или тавтологиями. Высказывания, которые формализуются тавтологиями, называются логически истинными высказываниями.