Автор работы: Пользователь скрыл имя, 08 Декабря 2010 в 19:50, статья
Название ISDN (integrated system digital network - интегрированные цифровые сети) было предложено группой XI CCITT в 1971 году (cм. П. Боккер, ISDN. Цифровая сеть с интеграцией служб.
Интегрированные сети ISDN
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
Название ISDN (integrated system digital network - интегрированные цифровые сети) было предложено группой XI CCITT в 1971 году (cм. П. Боккер, ISDN. Цифровая сеть с интеграцией служб. Понятия, методы, системы. “Радио и связь”, М. 1991). Основное назначение ISDN - передача 64-кбит/с по 4-килогерцной проводной линии и обеспечение интегрированных телекоммуникационных услуг (телефон, факс, данные и пр.). Использование для этой цели телефонных проводов имеет два преимущества: они уже существуют и могут использоваться для подачи питания на терминальное оборудование. Выбор 64 Кбит/c стандарта определен простыми соображениями. При 4-килогерцной полосе, согласно теореме Найквиста-Котельникова, частота стробирований должна быть не ниже 8 кГц. Минимальное число двоичных разрядов для представления результатов стробирования голосового сигнала при условии логарифмического преобразования равна 8. Таким образом, в результате перемножения этих чисел и получается значение полосы B-канала ISDN. Базовая конфигурация каналов имеет вид 2*B + D = 2*64 +16 = 144 кбит/с. Помимо B-каналов и вспомогательного D-канала isdn может предложить и другие каналы с большей пропускной способностью, канал Н0 с полосой 384 Кбит/с, Н11 – 1536 и Н12 – 1920 Кбит/c (реальные скорости цифрового потока). Для первичных каналов (1544 и 2048 Кбит/с) полоса D-канала может составлять 64 Кбит/с.
Ожидается, что к 2000 году в США будет 10000000 пользователей ISDN. Число же телефонных аппаратов в мире приближается к миллиарду. Существует около 10 разновидностей протоколов ISDN (national ISDN-1 (США); at&t custom; euro-ISDN (Net3) и т.д.
ISDN предполагает, что по телекоммуникационным каналам передаются цифровые коды, следовательно аналоговые сигналы в случае телефона или факса должны быть преобразованы соответствующим образом, прежде чем их можно будет передать. При передаче цифровых сигналов используется кодово-импульсная модуляция (cм. раздел “Преобразование, кодирование и передача информации”), впервые примененная во время второй мировой войны. Широкое внедрение этого метода передачи относится к началу 60-х годов.
Чтобы обеспечить пропускную способность 64 Кбит/с по имеющимся телефонным проводам, не нарушая теоремы Шеннона, надо ставить ретрансляторы на расстоянии 2 км друг от друга (ведь ослабление сигнала в стандартном кабеле составляет около 15дБ/км). Последние достижения в телекоммуникационных технологиях существенно ослабили это ограничение.). Унификация скоростей передачи данных в ISDN способствует уменьшению объема оборудования, так как исключает необходимость межсетевых интерфейсов, согласующих быстродействие отдельных частей сети. Одной из наиболее массовых приложений ISDN является цифровая телефония. Человеческий голос можно удовлетворительно закодировать, используя лишь 6 бит, но вариации уровня входного сигнала приводит к тому, что нужно не менее 8 бит (с учетом логарифмической характеристики аналого-цифрового преобразователя - АЦП). Значения кодов, полученных в результате последовательных преобразований звука человеческой речи, сильно коррелированны, а это открывает дополнительные возможности для сжатия информации.
Сети ISDN дали толчок развитию сетевой технологии. На очереди интеграция Интернет с кабельным телевидением, а там, глядишь, появятся квартирные сети, объединяющие телевизор, ЭВМ, бытовую технику и телефон. Это неудивительно, когда цена хорошего телевизора почти сравнялась с ценой персональной ЭВМ, а многие бытовые устройства имеют встроенные процессоры. Здесь должно быть решено несколько проблем. С одной стороны телевизионные кабели имеют полосу пропускания достаточную для передачи как аналогового (заведомо более 10 каналов), так и цифрового телевидения. Проблема возникает при совмещении передачи телевизионного сигнала и цифрового (или PCM) канала Интернет (кабельные модемы пока достаточно дороги). Современные телевизионные системы обеспечивают порядка 50 каналов одновременно, что накладывает весьма жесткие требования на кабельную разводку между локальным распределительным узлом и оконечными пользователями. Распределительные узлы сегодня объединяются с помощью ATM-каналов (~150 Мбит/с, широкополосный ISDN), что уже сегодня недостаточно. По мере удешевления можно ожидать, что в ближайшем будущем в квартиры конечных пользователей будет осуществлен ввод оптоволоконных кабелей, что решит проблему радикально (не нужен не только телевизионный, но и телефонный кабель). Попутно это решит проблему и видеотелефона. На очереди разработка новых стандартов, которые позволят осуществить такую интеграцию.
Так как первоначально ISDN создавалась для передачи голоса и изображения (факс), начнем именно с этих приложений. Для факсов сети ISDN особенно привлекательны, так как может обеспечить высокое разрешение (до 16 линий/мм и лучше) при разумном времени передачи.
Для иллюстрации взаимодействия различных частей ISDN рассмотрим рис. 4.3.3.1.
4.3.3.1 Традиционная схема сети ISDN
Network termination 1 (NT-1) представляет собой прибор, который преобразует 2-проводную ISDN-линию (от телефонной компании), называемую u-интерфейсом, в 8-проводный S/T-интерфейс. Как правило, к точке Т может быть подключено только одно оконечное устройство. NT2 же предназначено для подключения большого числа разнотипного оборудования (функции NT1 и NT2 могут быть совмещены в одном приборе). Допускается объединение интерфейсов NT2 и TA; возможна работа нескольких NT1 с одним NT2. Интерфейс NT2 может обеспечивать внутриофисный трафик, образуя шину, к которой может подключаться несколько терминалов. Терминальное оборудование (TE) в режиме точка-точка может быть подключено к системе кабелем длиной до 1 км, реальным ограничением служит ослабление в 6 дБ на частоте 96 кГц. В режиме точка-мультиточка (до 8 терминалов) подсоединение производится параллельно, но длина шины в этом случае не должна превышать 200 м (по временным ограничениям). Терминалы, чтобы не вносить искажений, должны иметь входное сопротивление не ниже 2500 Ом. Шина согласуется 100 омным сопротивлением, как со стороны NT1, так с противоположного удаленного конца (это справедливо для принимающих и передающих пар проводов). Оборудование, следующее рекомендациям ISDN, может подключаться в точках S и T. Схемы кабелей, объединяющих интерфейсы ISDN с оконечным оборудованием, показаны на рис. 4.3.3.2.
Рис. 4.3.3.2. Кабели и разъемы в каналах ISDN
Точки s и t обеспечивают доступ к канальным услугам ISDN. В точке R (на рис. 4.3.3.2 TA - терминальный адаптер), в зависимости от типа терминального адаптера, доступны некоторые другие стандартные CCITT услуги (X.21 или X.25, V.35, RS-232 или V.24). Входы TE1 и TE2 предназначены для удаленных телекоммуникационных услуг. Все виды услуг могут быть разделены на три группы по форме доступа к 64кбит/с:
Эталонная конфигурация системы передачи и приема сигналов, а также подачи питания на терминальное оборудование показана на рис. 4.3.3.3. Передаваемая по проводам мощность составляет 1-0.5 Вт. Дополнительная пара проводов питания является в настоящее время опционной.
Рис. 4.3.3.3 Эталонная конфигурация системы передачи и приема сигналов, а также подачи питания на терминальное оборудование
(*) Относится
к полярности кадровых
Логика взаимодействия различных частей сети isdn показана на рис. 4.3.3.4.
Рис. 4.3.3.4 Взаимодействие основных протоколов ISDN
Процессом передачи информации между узлами управляет сигнальная система общего канала (CCS - common channel signaling system). В ISDN используется 7-я сигнальная система CCITT (рис. 4.3.1.1). Ее уровни сходны, но не идентичны OSI. На нижних уровнях используется MTP (message transfer part - система передачи сообщений), задачей которой является надежная пересылка сигнальных пакетов по сети. Пользовательские (прикладные) сообщения иерархически расположены над MTP, которая имеет три уровня.
Терминальное оборудование подключается к NT через трансформатор (см. рис. 4.3.3.5). На входе трансиверов используются схемы защиты от переходных процессов в линиях связи.
Рис. 4.3.3.5 Терминальный ISDN-интерфейс
Нормальная амплитуда сигнала составляет 750 мВ. Формат кадра первого уровня показан на рис. 3.5.3.6, он содержит 48 бит и имеет длительность 250 мксек. Физическая скорость обмена составляет 192 Кбит/с (~5,2 мксек на бит). Блок-схема терминального ISDN-интерфейса показана на рис. 4.3.3.5. Питание интерфейса осуществляется через 4-проводный выходной кабель. На вход интерфейса подается импульсно-кодовый модулированный сигнал (ИКМ). Интерфейс обеспечивает доступ к B- и D-каналам. Номинальное смещение в начале кадра в случае обмена терминал-сеть, как показано на рис. 4.3.3.6, составляет 2 бита. В некоторых случаях оно может оказаться больше из-за задержек в кабеле. Кадр включает в себя несколько l-битов, которые служат для балансировки цуга по постоянному току. Для направления NT -> TE (связь сетевого оборудования с терминальным) первыми битами кадра являются F/L-пары (см. начало и конец диаграмм; временная ось направлена слева направо), нарушающие AMI-правила (чередование полярности сигнала при передаче логической единицы). Раз чередование нарушено, до завершения кадра должно присутствовать еще одно такое нарушение. Бит FA реализует это второе нарушение чередования полярности. A-бит используется в процедуре активации для того, чтобы сообщить терминалу о том, что система синхронизована. Активация может проводиться по инициативе терминала или сетевого оборудования, а деактивация может быть выполнена только сетью. Помимо B1, B2 (байты выделены стрелками) и D-каналов формируются также виртуальные E- и A-каналы. E-канал служит для передачи эхо от NT1 к TE в D-канале. Существует 10-битовое смещение (задержка) между D-битом, посылаемым терминалом, и E-битом эхо (отмечено стрелкой на рис. 4.3.3.6). M-бит используется для выделения мультифреймов (эта услуга недоступна в Европе). M-бит идентифицирует некоторые FA-биты, которые могут быть изъяты для того, чтобы сформировать канал управления (например, при проведении видеоконференций). S-бит является резервным. Назначения различных вспомогательных каналов собраны в таблице А.
Таблица А
|
Следует обратить внимание на то, что базовый ISDN-канал содержит два В-канала по 64 кбит/c и один D-канал с 16 кбит/c. Первичный же isdn-канал содержит 24 или 30 стандартных В-каналов и один D-канал с полосой 64 кбит/c.
На первом уровне
протокола разрешаются
info=3 и info=4 представляют
собой кадры, содержащие
Второй уровень решает проблему надежной передачи сообщений по схеме точка-точка. К каждому сообщению добавляется 16 контрольных чисел, включающих в себя идентификатор сообщения. Этот уровень описывает HDLC-процедуры (high level data link communication), которые обычно называются процедурами доступа для D-канала (LAP - link access procedure). LAP D базировался первоначально на рекомендациях X.25 слоя 2, но в настоящее время процедуры LAP D функционально обогатились (разрешено много LAP для одного и того же физического соединения, что позволяет 8-ми терминалам использовать один D-канал). Уровень 2 должен передать уровню 3 сообщения, лишенные ошибок. На уровне 2 решается проблема повторной передачи пакетов в случае их потери или доставки с ошибкой. LAP D базируется на LAP B рекомендаций X.25 для уровня 2. Кадры на уровне 2 представляют собой последовательности 8-битных элементов. Формат кадра второго уровня показан на рис. 4.3.3.7.
Рис. 4.3.3.7 Структура кадра для слоя 2
Стартовый и завершающие флаги передаются так, что к любым 5 единицам подряд добавляется нуль (чтобы избежать имитации сигнатуры в других, в том числе информационных полях). Принимающая сторона эти нули убирает. FSC- вычисляется по методике CRC, описанной в разделе 3.3.1.
Каждый кадр начинается и завершается одной и той же последовательностью (сигнатура начала/конца кадра). Размер управляющего поля зависит от типа кадра (1 или 2 октета). Информационные элементы присутствуют только в кадрах, содержащих данные 3-го уровня. Формат двухбайтного поля адреса для уровня 2 показан на рис. 4.3.3.7. Адрес имеет лишь локальное значение и известен только участникам процедуры обмена. Формат байтов адреса показан на рис. 4.3.3.8.