Активные выпрямители с принудительным формированием кривой тока, потребляемого из питающей сети

Автор работы: Пользователь скрыл имя, 02 Февраля 2011 в 23:57, реферат

Описание работы

Выпрямитель – это преобразователь переменного напряжения в постоянное. Неуправляемые выпрямители выполняются на базе диодов, управляемые – на базе тиристоров или других управляемых вентильных приборов. Принцип выпрямления основан на использовании свойств силовых электронных вентилей проводить однонаправленный ток для преобразования переменного тока в постоянный без существенных потерь энергии.

Содержание работы

ВВЕДЕНИЕ
1 ПРОБЛЕМЫ КАЧЕСТВА ЭНЕРГИИ ПРИ ИСПОЛЬЗОВАНИИ ВЫПРЯМИТЕЛЕЙ
2. ВЫПРЯМИТЕЛЬ С ПРИНУДИТЕЛЬНЫМ ФОРМИРОВАНИЕМ КРИВОЙ ТОКА, ПОТРЕБЛЯЕМОГО ИЗ ПИТАЮЩЕЙ СЕТИ5
2.1 ОДНОФАЗНАЯ ПОЛУМОСТОАВЯ СХЕМА АКТИВНОГО ВЫПРЯМИТЕЛЯ
2.2 ТРЕХФАЗНЫЙ АКТИВНЫЙ ВЫПРЯМИТЕЛЬ2.3МОДНОФАЗНЫЙ ККМ 1
2.4 "VIENNA" - ВЫПРЯМИТЕЛЬ
3 СФЕРЫ ПРИМЕНЕНИЕ АКТИВНЫХ ВЫПРЯМИТЕЛЕЙ В ПРОМЫШЛЕННОСТИ
3.1 ЭЛЕКТРОПРИВОД
3.2 СВАРОЧНЫЕ ИНВЕРТОРЫ С КОРРЕКЦИЕЙ КОЭФФИЦИЕНТА МОЩНОСТИ
4 КРАТКИЙ ОБЗОР ПРОИЗВОДИТЕЛЕЙ АВ
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Файлы: 1 файл

Активный Выпрямитель.docx

— 1.21 Мб (Скачать файл)
 

   Меньшее напряжение на ключах Виенна-выпрямителя позволяет использовать МДП-транзисторы и работать с высокой частотой коммутации, при этом уменьшаются номиналы дросселей, улучшаются массогабаритные показатели, упрощается система управления. Однако по мере увеличения мощности преобразователя увеличиваются емкости конденсаторов фильтра и затраты на них. Кроме того при проектировании при построении системы управления необходимо учесть ряд важных специфических факторов, которые не позволяют использовать комплект схем управления, разработанный для однофазных ККМ. Поэтому область применения Виенна выпрямителей ограничена мощностью нагрузки порядка 1-5 кВт. 

   3 СФЕРЫ ПРИМЕНЕНИЕ АКТИВНЫХ ВЫПРЯМИТЕЛЕЙ В ПРОМЫШЛЕННОСТИ 

   3.1 ЭЛЕКТРОПРИВОД  

   В электроприводах  больших мощностей одна из наиболее важных проблем - отдача энергии, особенно в приводах, работающих в повторно-кратковременных  режимах, а также, что немаловажно  при больших мощностях, улучшить форму, потребляемого из сети тока. Наиболее массовое практическое применение в системах регулируемых электроприводов переменного тока получили двухзвенные преобразователи частоты с промежуточным звеном постоянного тока, а из них - преобразователи с автономными инверторами напряжения.    Силовая схема преобразователей данного типа состоит из двух основных звеньев:

   •       преобразователя напряжения источника питания в постоянное напряжение;

   •       преобразователя постоянного напряжения в переменное напряжение требуемой частоты и амплитуды.        

   Наиболее  распространенны  ДПЧ, выполненных по схеме "неуправляемый выпрямитель - LC фильтр - тиристорный либо транзисторный автономный инвертор с широтно-импульсной модуляцией выходного напряжения". Неуправляемый выпрямитель – это диодный мостовой выпрямитель по схеме Ларионова. 

   

   Рисунок 9 - Двухзвенный преобразователь частоты с неуправляемым выпрямителем и транзисторным АИН

  1. У этого преобразователя недостаточно полно проработаны некоторые вопросы энергосбережения, качества электропотребления и электромагнитной совместимости преобразователей. При использовании пассивного выпрямителя, состоящего из диодного моста и фильтрующего конденсатора, несмотря на малые пульсации выпрямленного выходного напряжения на входе получаем несинусоидальный ток с большими пиковыми значениями. Это значительно понижает коэффициент мощности системы, вызывает существенные радиопомехи. Например, при пульсациях выходного напряжения 10% от напряжения на нагрузке амплитудное значение установившегося потребляемого тока в семь раз превышает значение постоянного тока нагрузки, а коэффициент мощности при этом - не более 0,5. Улучшить форму тока можно путем внесения в цепь дополнительных пассивных элементов. Но это приводит к увеличению массогабаритных показателей устройства, так как реактивные компоненты в таком случае работают на относительно низких частотах. Кроме этого выпрямитель подразумевает поток энергии только в одном направлении от сети в нагрузку. Проблему перенапряжения в звене постоянного тока, возникающую при торможении привода (особенно при большой мощности) в этом типе преобразователя приходится решать с помощью тормозного резистора очень большой мощности, просто рассеивая выделяющуюся энергию в тепло.

   Улучшить  показатели преобразователей частоты  помогает использования в звене постоянного тока выпрямителей с принудительной коммутацией. Структуру силовых цепей двухзвенного ПЧ с активным выпрямителем напряжения иллюстрирует рис. 5. В силовой цепи последовательно включены активный выпрямитель напряжения (АВН), фильтр Ф и автономный инвертор напряжения АИН. Силовые полупроводниковые переключающие элементы выпрямителя и инвертора, обладающие полной управляемостью и двусторонней проводимостью тока, условно показаны в виде ключей. Выпрямитель АВН, выполненный по трехфазной мостовой схеме, преобразует напряжение питающей сети переменного тока в стабилизированное напряжение постоянного тока V' д на конденсаторе фильтра. Трехфазный мостовой АИН работает в режиме широтно-импульсной модуляции   (ШИМ)  и   преобразует  это  постоянное  напряжение  в переменное напряжение на выходе с требуемыми значениями частоты и амплитуды основной гармоники. Это обеспечивает благоприятную форму тока двигателя и равномерность его вращения в широком диапазоне скоростей. 

   

   Рисунок 10 - Структура силовых цепей двухзвенного ПЧ с активным выпрямителем и автономным инвертором напряжения

    Активный выпрямитель выполняется по схеме, полностью идентичной схеме инвертора и по существу представляет собой обращенный АИН, также работающий в режиме ШИМ. Так же, как и автономный инвертор, активный выпрямитель инвертирует постоянное напряжение фильтрового конденсатора Uj в импульсное напряжение на своих зажимах переменного тока А, В и С. Эти зажимы связаны с питающей сетью через буферные реакторы БР. В отличие от регулируемой рабочей (полезной) частоты напряжения на зажимах   переменного   тока   АИН   А1, В1   и   С1   рабочая   частота напряжения на зажимах переменного тока АВН постоянна и равна частоте питающей сети. Разность мгновенных значений синусоидального напряжения питающей сети и импульсного напряжения на зажимах переменного тока АВН воспринимаются буферными реакторами БР, являющимися неотъемлемыми элементами системы, индуктивность обеспечивает повышающий режим работы преобразователя. Благодаря использованию режима ШИМ импульсное напряжение, формируемое активным выпрямителем на стороне переменного тока,  имеет благоприятный  гармонический  состав,  в котором основная (полезная) гармоника и высшие гармоники существенно различаются по частоте. Это создает благоприятные условия для фильтрации высших гармоник тока, потребляемого из питающей сети, буферными реакторами. Таким образом решается задача потребления из сети практически синусоидального тока. 

   Фазовый угол потребляемого тока зависит  от соотношения амплитуд и фазовых  углов напряжений, приложенных к  реакторам со стороны сети и со стороны активного выпрямителя, а также от параметров (индуктивности  и активного сопротивления) реактора. Варьируя с помощью системы управления АВН параметрами основной гармоники  его переменного напряжения на зажимах  А1, В1 и С1, можно обеспечить потребление из сети необходимого тока с заданным фазовым углом. Иными словами, можно обеспечить работу преобразователя частоты с заданным значением коэффициента мощности, например равным единице, либо "опережающим", либо "отстающим" коэффициентом мощности. Поэтому преобразователь частоты с активным выпрямителем в принципе может быть использован в системе электроснабжения либо как нейтральный элемент, либо как источник, либо как потребитель реактивной мощности.

   Как коммутатор тока активный выпрямитель преобразует  потребляемый из сети переменный, близкий  к синусоидальному, ток в пульсирующий выходной ток, содержащий переменную и постоянную составляющие. Переменная составляющая замыкается через буферный конденсатор, который ограничивает пульсации напряжения Ud в звене постоянного тока от переменной составляющей выходного тока АВН. Заметим, что данный конденсатор выполняет ту же функцию и по отношению к переменной составляющей тока, потребляемого автономным инвертором двухзвенного преобразователя. Постоянная составляющая выходного тока АВН подпитывает буферный конденсатор, компенсируя расход постоянного тока, отдаваемого во входную цепь АИН.  
       Как преобразователь энергии постоянного тока в энергию переменного тока автономный инвертор обладает чрезвычайно ценным свойством - возможностью двустороннего энергетического обмена между сетями постоянного и переменного тока. Это свойство . сохраняется и в инверсной схеме включения автономного инвертора в качестве активного выпрямителя. В итоге двухзвенный ПЧ с активным выпрямителем обеспечивает двусторонний энергетический обмен между питающей сетью и электрическим двигателем, в том числе режимы рекуперации энергии в питающую сеть. Благодаря этому возможно построение энергосберегающих систем электропривода в различных  сферах  применения  с высоким   качеством   потребления электроэнергии. 

   

   Рисунок 11 – Осциллограмма напряжения в звене постоянного тока  

   Векторные диаграммы, иллюстрирующие работу АВ без  учета активного сопротивления дросселей, представлены на рисунке 4.

   

Рисунок 12 – Векторные диаграммы работы АВ: а) cosϕ=1; б) 0<cosϕ<1, ϕ<0; в) cosϕ=-1; г) 0> cosϕ>-1, -π/2>ϕ>-π.

   Напряжение в звене постоянного тока Ud>Ud0 (Ud0 – амплитуда выпрямленного напряжения мостовой схемы), что подтверждает рисунок 11. Кроме того, АВ может не просто обеспечить cosϕ=1 (рис.12, а), но и генерировать реактивную (рис.12,б) или активную мощность (рис.12,в), а может одновременно совмещать генерацию активной и реактивной мощности (рис.12,г). Однако в режиме генерации реактивной мощности АВ потребляет из сети полный ток I больше (добавляется реактивная составляющая тока), что видно из величины падения напряжения на индуктивности UL, если сравнить рисунки 12,а и 12,б.Осциллограммы фазных напряжения Uф, тока Iф и мощности Pф при работе АВ в двигательном и генераторном режимах, а также в режиме генерации реактивной мощности, полученные путем моделирования в программном пакете MATLAB 6, с использованием его приложений SIMULINK и POWERSYSTEM BLOCKSET - подтверждают теоретические положения статьи и представлены на рисунке 13.

   

   Рисунок 13 – Осциллограммы работы АВ Pф – фазная мощность, Iф – фазный ток сети, Uф – фазное напряжение сети: а) двигательный режим с переходом в генераторный; б) режим генерации реактивной мощности ϕ=30 °             

   

   Рисунок14 - Временные диаграммы напряжения питания, потребляемых тока и напряжения: : а) при потреблении энергии, б) при рекуперации энергии.

   Временные диаграммы напряжения сети, выпрямленного  напряжения и потребляемого тока представлены на рис14: а) при потреблении энергии, б) при рекуперации энергии. Из полученных характеристик видно, что активный выпрямитель позволил стабилизировать выпрямленное напряжение с малым уровнем пульсаций и сформировать синусоидальный  ток. 

   3.2 СВАРОЧНЫЕ ИНВЕРТОРЫ С КОРРЕКЦИЕЙ  КОЭФФИЦИЕНТА МОЩНОСТИ 

   Активно разрабатываются интегральные решения  типа «активный ККМ + ИИСТ» на базе единой силовой части. Целесообразность применения активных корректоров коэффициента мощности (ККМ) в составе сварочных инверторов достаточно давно и активно обсуждается. Преимущества ИИСТ с активным ККМ по сравнению с оборудованием без коррекции коэффициента мощности очевидны. Во-первых, снижается среднеквадратичное значение тока, потребляемого ИИСТ от питающей сети, что позволяет использовать такие сварочные инверторы в маломощных сетях при сохранении заявленного максимального сварочного тока.  Во-вторых, повышается стабильность выходного тока и напряжения инвертора, что важно для профессионального оборудования. В-третьих, устраняется влияние ИИСТ на других потребителей, питающихся от той же первичной сети. Несинусоидальный ток, генерируемый нелинейной нагрузкой, протекая по импедансу питающей сети, порождает искажения формы напряжения сети. В спектре потребляемого тока содержатся не только высшие гармоники сетевой частоты, но и гармоники комбинационных частот. Источники сварочного тока, работающие в режимах импульсной модуляции тока дуги (обычно используются частоты модуляции в сотни герц), потребляют ток, в спектре которого, кроме высших гармоник, содержатся также гармоники с частотами ниже основной. Это приводит к «мерцанию» напряжения первичной сети с частотой   единицы-десятки   герц. В трёхфазных сетях применение ККМ нормализует величину тока, текущего в нулевом проводе. При применении активных ККМ отмечается  улучшение качества сварного соединения, уменьшение разбрызгивания металла и снижение пульсаций тока нагрузки с частотой, кратной частоте напряжения питающей сети. По этим причинам сегодня активно разрабатываются интегральные решения, совмещающие функции коррекции коэффициента мощности и источника сварочного тока в одной силовой части 
Авторами статьи [11] был разработан трёхфазный активный ШИМ-выпрямитель со свойствами источника тока для питания сварочного инвертора. Блок-схема предложенного активного ККМ показана на рисунке 22. На входе ККМ используется LC-фильтр, состоящий из элементов Lf и Cf и предназначенный для снижения гармоник потребляемого тока. Применение ШИМ-выпрямителя при алгоритме управления  с контролем квадратурных компонент вектора фазного тока позволил независимо регулировать активную и реактивную составляющие потребляемой полной мощности, стабилизировать выходное напряжение +Vd и погасить паразитные колебания тока во входном фильтре LfCf. Разветвлённый алгоритм управления силовыми транзисторами VT1 - VT6 корректора реализован с помощью микроконтроллера MC68HC916Y1 фирмы Motorola.
 

   

   Рисунок 15 - Активный ККМ понижающего типа со свойствами источника тока. 
 

   4 КРАТКИЙ  ОБЗОР ПРОИЗВОДИТЕЛЕЙ АВ

    

   На  сегодняшний день ведущими зарубежными  и отечественными производителями  устройств преобразовательной техники налажен серийный выпуск активных выпрямителей напряжения (АВН) для систем электропривода средней и большой мощности. Например, АВН мощностью от 2,2 до 1500 кВт выпускаются зарубежной фирмой VACON. Мировые производители преобразовательной техники на основе топологии с АИН предлагают полную линейку мощностей до 2.3МВт, такие как

Siemens Simovert Masterdrive, ABB ACS611, ACS617. Данное борудование

способно обеспечить электромагнитную совместимость, соответствующую мировым стандартам.

   Фирма DCYS разработала и выпускает модули VUM 25-05 и VUM 85-05А, рассчитанные на 10 кВт и 30 кВт, из которых собирают трехфазный «Vienna»-выпрямитель. Известная фирма Shneider Electric  предлагает преобразователи частоты Altivar 1000 с встроенным AFE в качестве выпрямителя. ПЧ фирмы TOSHIBA  серии EV8  - это ДПЧ для двигателей высокой мощности, который компонуются AFE. Маломощные преобразователи на 750 Вт с активным выпрямителем выпускает фирма Mean Well.  
 
 
 
 

   ЗАКЛЮЧЕНИЕ

   С момента  принятия ГОСТ Р 51317.3.2_2006 по эмиссии гармонических составляющих тока, создаваемой статическими преобразователями, в электрических сетях взамен статических преобразователей с низким КМ стали применяться активные ККМ. ККМ позволяет не только улучшить гармонический состав тока потребления, но и повысить мощность подключенного к сети оборудования за счёт поддержания заданного уровня напряжения на конденсаторе в цепи постоянного тока.Помимо улучшения электромагнитной совместимости преобразователя и сети( улучшение гармонического состава тока потребления). ККМ позволяют повысить мощность подключенного к сети оборудования за счёт поддержания заданного уровня напряжения на конденсаторе в цепи постоянного тока, могут обеспечивать двунаправленную передачу энергии от сети в нагрузку и обратно (двухквадрантные ККМ), а также повышение напряжения на стороне постоянного тока, что дает возможность построения бестрансформаторных преобразователей частоты для электропривода и источников бесперебойного питания с выходным напряжением 220 В. Для создания источников питания мощностью более 1 кВт применяют трехфазные ККМ. Среди них наибольшее распространение получил так называемый активный выпрямитель, реализуемый на базе трехфазного инвертора напряжения, функционирующего как в инверторном, так и в обратимом (выпрямительном) режимах..ККМ данного типа широко применимы в электроприводах, источниках питания, частотных преобразователях и другом промышленном электрическом оборудовании. Наряду с активным выпрямителем известен и одноквадрантный трехфазный ККМ Виенна-выпрямитель. Его например, целесообразно использовать в в установках индукционного нагрева."Vienna"-выпрямитель дает дополнительный канал регулирования и расширяет возможности согласования с переменной индукционной нагрузкой  обеспечивает электромагнитную совместимость источника питания для индукционного нагрева с питающей сетью, которая сохраняется при изменении выходного напряжения в диапазоне от 600 до 1100 В при постоянной мощности 100 кВт. Такое увеличение выходного напряжения выше используемого сейчас порядка 700...750 В. позволяет при неизменной мощности уменьшить ток инвертора и улучшить условия коммутации его транзисторов.

Информация о работе Активные выпрямители с принудительным формированием кривой тока, потребляемого из питающей сети