Световые диоды

Автор работы: Пользователь скрыл имя, 28 Января 2012 в 14:42, реферат

Описание работы

Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.
Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее!

Содержание работы

Введение 3
Понятие,виды,структура светодиодов 6
Свойства и характеристики светодиодов 13
Возможности, применение и недостатки светодиодов 18
Заключение 23
Список литературы

Файлы: 1 файл

Светодиоды.doc

— 222.00 Кб (Скачать файл)

Эти способы  наиболее просты и в настоящее  время наиболее экономичны. Состав кристалла с гетероструктурами на основе InGaN/GaN подбирается так, чтобы его спектр излучения соответствовал спектрам возбуждения люминофоров. Кристалл покрывается слоем геля с порошком люминофора таким образом, чтобы часть голубого излучения возбуждала люминофор, а часть – проходила без поглощения. Форма держателя, толщина слоя геля и форма пластикового купола рассчитываются и подбираются так, чтобы излучение имело белый цвет в нужном телесном угле. Сейчас исследуется около десятка различных люминофоров для белых СД. На рис. 4 показано строение 5мм светодиода, излучающего белый свет. Четвертый способ – смешение из лучения трёх люминофоров (красного, зелёного и голубого), возбуждаемых ультрафиолетовым светодиодом. На рис. 5 показано получение белого света с помощью ультрафиолетового светодиода и RGB-люминофора. Этот способ использует технологии и материалы, которые разрабатывались в течение многих лет для люминесцентных ламп. Он требует только два контактных ввода на один излучатель. Но этот способ связан с принципиальными потерями энергии при преобразовании света от диода в люминофорах. Кроме того, эффективность источника излучения уменьшается, т.к. разные люминофоры имеют разные спектры возбуждения люминесценции, не точно соответствующие УФ-спектру излучения кристалла СД. Светоотдача белых СД ниже, чем светоотдача СД с узким спектром, поскольку в них происходит двойное преобразование энергии, часть её теряется в люминофоре. В настоящее время светоотдача лучших белых СД 25...30 лм/Вт. 
 
 
 
 

Существует три  способа получения белого света от светодиодов. Первый - смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

У каждого способа  есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать [3].

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы, и позволяют получить хороший белый цвет. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. 

Свойства  и характеристики светодиодов 

Светодиод –  низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше - от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении  светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем  и обычно составляет более 5В для  одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения  эффективности светодиодов между  собой и с другими источниками  света используется светоотдача: величина светового потока на один ватт электрической  мощности. Также интересной маркетинговой  характеристикой оказывается цена одного люмена.

Реакция светодиода на повышение температуры такова: p-n-переход – это «кирпичик» полупроводниковой  электронной техники, представляющий собой соединённые вместе два  куска полупроводника с разными  типами проводимости (один с избытком электронов – «n-тип», второй с избытком дырок – «p-тип»). Если к p-n переходу приложить «прямое смещение», т.е. подсоединить источник электрического тока плюсом к р-части, то через него потечёт ток. Современные технологии позволяют создавать интегральные схемы, содержащие огромное количество p-n переходов на одном кристалле; так, в процессоре Pentium-IV их количество измеряется десятками миллионов [1].

Нас интересует, что происходит после того, как  через прямо смещённый p-n переход  пошёл ток, а именно момент рекомбинации носителей электрического заряда – электронов и дырок, когда имеющие отрицательный заряд электроны «находят пристанище» в положительно заряженных ионах кристаллической решётки полупроводника. Оказывается, что такая рекомбинация может быть излучательной, при этом в момент встречи электрона и дырки выделяется энергия в виде излучения кванта света – фотона. В случае безизлучательной рекомбинации энергия расходуется на нагрев вещества. В природе существует как минимум 5 видов излучательной рекомбинации носителей зарядов, в том числе так называемая прямозонная рекомбинация. Впервые это явление в далёкие 20-е годы исследовал О.В. Лосев, наблюдавший свечение кристаллов карборунда (карбид кремния SiC). Для большинства полупроводниковых диодов это явление – просто «побочный эффект», не имеющий практического смысла. Для светодиодов же излучательная рекомбинация – физическая основа их работы.

Говоря о температуре  светодиода, необходимо различать температуру  на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости  с повышением температуры не одинаково  у светодиодов разных цветов. Оно  больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

Ток через светодиод нужно стабилизировать. 
 
 

Как видно из рисунка, в рабочих режимах ток  экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо  пропорционален току, то и яркость  светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Светодиоды допускается  «запитывать» в импульсном режиме, при этом импульсный ток, протекающий через прибор, может быть выше, чем значения постоянного тока (до 150 мА при длительности импульсов 100 мкс и частоте импульсов 1 кГц). Для управления яркостью светодиодов (и цветом, в случае смешения цветов) используется широтно-импульсная модуляция (ШИМ) – метод, очень распространённый в современной электронике. Это позволяет создавать контроллеры с возможностью плавного изменения яркости (диммеры) и цвета (колор-чейнджеры) [6].

Конвертор (в  англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

Яркость светодиодов  очень хорошо поддается регулированию, но не за счет снижения напряжения питания - этого-то как раз делать нельзя, - а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

Считается, что  светодиоды исключительно долговечны. Но это не совсем так. Чем больший  ток пропускается через светодиод  в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20 - 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Старение светодиода связано не только со снижением его  яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно  изменение цвета светодиодов в процессе старения и сравнить с другими источниками [2].

Спектр излучения  светодиода близок к монохроматическому, в чем его кардинальное отличие  от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

Есть надежда, что вскоре влияние светодиодов  на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения.

Технологии изготовления светодиодов и светодиодных модулей  существующих на сегодняшний день: что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.

За один процесс, который длится несколько часов, можно вырастить структуры на 6 — 12 подложках диаметром 50 — 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой культуры.

Важным этапом технологии является планарная обработка  пленок: их травление, создание контактов  к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24x0,24 до 1x1 мм2.

Следующим шагом  является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять  производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке. 
 
 

Светодиоды, выполненные  по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль [7].

Светодиоды находят  применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности. 
 
 

Информация о работе Световые диоды