Автор работы: Пользователь скрыл имя, 24 Марта 2011 в 16:53, лекция
При необходимости изменения режима работы, например в регулировочном режиме, параметры можно изменить, управляя режимом работы. При этом новый режим работы также установившийся, но уже с другими параметрами. Например, регулирование скорости двигателя изменит режим работы технологической установки на другой. Изменение не может произойти мгновенно и займет некоторое время, в течение которого и произойдет изменение скорости в силу электромагнитной и электромеханической природы происходящих процессов.
ЛЕКЦИЯ
1
I
ЭЛЕКТРОМАГНИТНЫЕ ПЕРЕХОДНЫЕ ПРОЦЕССЫ
1.1
Понятие электромагнитных
переходных процессов
Дадим понятие переходного процесса, вообще.
Любой рабочий режим электроустановки можно рассматривать как установившийся. Он характеризуется определенными установившимися параметрами, такими как рабочее напряжение, рабочий ток, частота сети питания, частота вращения и другие.
При необходимости изменения режима работы, например в регулировочном режиме, параметры можно изменить, управляя режимом работы. При этом новый режим работы также установившийся, но уже с другими параметрами. Например, регулирование скорости двигателя изменит режим работы технологической установки на другой. Изменение не может произойти мгновенно и займет некоторое время, в течение которого и произойдет изменение скорости в силу электромагнитной и электромеханической природы происходящих процессов.
Изменение режима работы может произойти и в результате аварий. Произойдет переход от рабочего режима к аварийному, что также изменит параметры электроустановки в течении некоторого времени.
Переходной процесс – это процесс перехода от одного установившегося режима электроустановки к другому.
Любой переходной процесс в электроустановке, например генераторе, сопровождается изменением электромагнитного состояния и соответственно происходит нарушение баланса между моментом на валу вращающейся машины и электромагнитным моментом.
Поэтому переходной процесс характеризуется совокупностью электромагнитных и электромеханических изменений в электроустановке.
Благодаря
значительной механической инерции
вращающихся машин начальная
стадия переходного процесса характеризуется
преимущественно
В данном курсе лекций рассматриваются электромагнитные и электромеханические переходные процессы, соответствующие аварийным режимам.
Электромагнитный переходный процесс в электроустановке — переходный процесс, характеризуемый изменением значений только электромагнитных величин электроустановки.
Электромеханический
переходный процесс в электроустановке
— переходный процесс, характеризуемый
одновременным изменением значений электромагнитных
и механических величин, определяющих
состояние электроустановки.
1.2
Короткие замыкания
в электрических сетях
Наиболее опасны в электроустановках режимы коротких замыканий.
Замыкание - всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы электрическое соединение различных точек электроустановок между собой или с землей.
Короткое замыкание — замыкание, при котором токи в ветвях электроустановки, примыкающих к месту его возникновения, резко возрастают, превышая наибольший допустимый ток продолжительного режима.
В
месте замыкания
Основные причины коротких замыканий (КЗ):
1)
нарушение изоляции в
2) набросы на провода воздушной линии;
3)
обрывы проводов воздушной
4) механические повреждения изоляции;
5) перенапряжения – внутренние и атмосферные (прямой удар молнии);
6) стихийные природные явления;
7)
неправильные действия
8)
преднамеренные замыкания с
Короткие замыкания бывают между фазами, между фазой и нулевым проводом. Замыкание фазного провода на корпус создает металлическое замыкание.
При коротком замыкании в поврежденной фазе многократно увеличивается ток, превышающий рабочий. Увеличение тока приводит к увеличению потерь энергии в проводниках и контактах, вызывает повышенный нагрев. Это может привести к тепловому пробою изоляции, возгоранию, свариванию контактов, нарушению механической целостности проводящих элементов.
В зависимости от места КЗ и продолжительности действия последствия могут иметь местный или общий для всей системы характер.
Кроме теплового воздействия на электрические элементы, токи замыкания создают значительные механические нагрузки. При взаимодействии магнитных потоков поврежденных фаз развиваются электродинамические нагрузки. Они и приводят к изгибам шин, механическому разрушению твердой изоляции и токоведущих частей при недостаточной их прочности.
1.2.1.67. Термическое действие тока короткого замыкания — тепловое действие тока короткого замыкания, вызывающее изменение температуры элементов электроустановки.
1.2.1.68.
Электродинамическое
действие тока короткого замыкания
— механическое действие электродинамических
сил, обусловленных током короткого замыкания,
на элементы электроустановки.
Для нормального функционирования элементов электрической сети необходимо, чтобы после режима короткого замыкания они остались неповрежденными. Следовательно, для всех электрических сетей должны быть спрогнозированы возможные режимы коротких замыканий, выполнены расчеты и определены условия защиты и отключение поврежденного участка. Электрическое оборудование должны быть проверено на термическое и динамическое воздействие короткого замыкания.
Параметры
переходного процесса короткого замыкания
зависят от соотношения мощности источника
питания и сопротивления цепи КЗ.
1.3
Виды коротких замыканий
По характеру переходного процесса все КЗ делятся на – 1) КЗ в цепи питающейся от шин неизменного напряжения, 2) КЗ вблизи генератора ограниченной мощности.
Шины неизменного напряжения – это источник питания напряжение, на зажимах которого практически остается неизменным при любых изменениях тока в подключаемой к нему цепи.
Такой источник питания называют системой неограниченной или бесконечной мощности. В действительности мощность энергосистемы или источника питания имеет конечное значение, и многие элементы цепи имеют значительное сопротивление по сравнению с собственным сопротивлением источника питания (ИП). В практических расчетах сопротивлением энергосистемы пренебрегают, если оно не превышает по величине (5-10)% результирующего сопротивления цепи КЗ.
КЗ вблизи генератора - это КЗ на выводах генератора или на таком удалении от него, что сопротивление цепи КЗ соизмеримо с сопротивлением генератора. Изменение параметров генератора существенно повлияет на переходной процесс и сопротивлением генератора нельзя пренебрегать.
По виду короткие замыкания бывают – трехфазные, двухфазные, двухфазные на землю, однофазные на землю.
Из
них трехфазные КЗ относят к симметричным,
которые возникают при замыкании трех
фаз между собой. Все фазы электроустановки
находятся в одинаковых условиях, по отношению
к другим. Остальные КЗ относятся к несимметричным.
Все фазы такой электроустановки находятся
в разных условиях. Условные обозначения
видов КЗ приведены на рисунке
1.1.
а)
в)
Рисунок 1.1 – Виды коротких замыканий:
а)
трехфазное, б) двухфазное на землю, в)
двухфазное, д) однофазное
1.4
Порядок расчета токов
трехфазного КЗ
Расчеты КЗ выполняются для выбора и проверки оборудования и выбора и проверки уставок релейной защиты и автоматики. Они сводятся к определению величин токов короткого замыкания и возможности их ограничения при опасных для оборудования значениях.
Все расчеты КЗ должны выполняться в соответствии с документом «Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования»
Для
практических расчетов токов короткого
замыкания принимаются
Допущения, применяемые при расчетах КЗ:
1)
не учитывать сдвиг по фазе
ЭДС различных синхронных
2) не учитывать межсистемные связи, выполненные с помощью электропередачи (вставки) постоянного тока;
3)
не учитывать поперечную
4)
не учитывать насыщение
5)
не учитывать ток
6)
не учитывать влияние активных
сопротивлений различных
(Или - при вычислении тока КЗ пренебрегают активным сопротивлением, если оно мало, но его учитывают при определении постоянной времени затухания апериодической составляющей тока КЗ.)
7)
приближенно учитывать
8)
приближенно учитывать
9)
принимать активное
Принимаемые допущения дают некоторую погрешность расчетов в сторону увеличения, но не более 10%.
Расчет токов трехфазного КЗ является основным и выполняется в следующем порядке;
1) составляется расчетная схема;
2)
по расчетной схеме
3)
выполняется преобразование
4)
по преобразованной схеме
1.5
Расчетная схема
Расчетная схема – это упрощенная однолинейная схема электроустановки с указанием всех элементов и их параметров, которые влияют на ток КЗ.
Расчетная схема, как правило, включает в себя элементы электроустановки и примыкающей части энергосистемы, исходя из условий, предусмотренных продолжительной работой электроустановки с перспективой не менее чем в 5 лет после ввода ее в эксплуатацию.
На
расчетной схеме указываются
номинальные параметры