Автор работы: Пользователь скрыл имя, 27 Ноября 2009 в 14:52, Не определен
Расчётная работа
Содержание:
Задание на курсовую работу 3
Введение 4
1. Построение графика функции E = f(t) 5
1.2 Идеальная
линейная характеристика…………………
2. Точность преобразования и линейность 8
3. Разрешающая способность АЦП 10
4. Линеаризация НСХ преобразователя 11
5. Выбор и обоснование принципа работы узла АЦП 12
6. Определение времени преобразования измерительного
преобразователя 15
7. Структурная схема измерительного преобразователя 16
Заключение 18
Список литературы 19
1. Исходные данные:
1) тип датчика – термопара: ТХА(К);
2) диапазон температуры – от 600 до 1100 °С;
3) входной сигнал – термо-э.д.с. (ГОСТ 6616-94 (ГОСТ Р50342-92), ГОСТ Р8.585 – 2001 (ГОСТ 3044-84));
4) выходной сигнал – двоичный код, пропорциональный температуре;
5) класс точности – 0,25;
6)
время реакции датчика на
7)
гальваническое разделение
2. Задание:
1) построить график функции E = f(t),
где E – термо-электродвижущая сила (термо-э.д.с.) термопары (мВ);
t – температура (°С);
2)
построить прямую, соединяющую крайние
точки заданного диапазона
3)
определить максимальную в
4)
определить разрешающую
5) определить число участков линеаризации, обеспечивающих заданную точность преобразования, и предложить вариант линеаризации НСХ преобразователя по температуре любым способом (кусочно-линейная аппроксимация, прямое преобразование с помощью ПЗУ, другое);
6) выбрать и обосновать принцип работы узла аналого-цифрового преобразования;
7)
разработать структурную (
В настоящее время широко используется преобразование аналоговых сигналов в цифровую форму, что связано с тем, что данные, представленные в цифровом виде легко обрабатывать с помощью существующих вычислительных устройств и реализовывать дешевые системы обработки и передачи данных. Преобразовывая в цифровую форму с помощью АЦП такие аналоговые величины, как температура, давление, скорость, звук, можно реализовать различные устройства обработки данных, отличающиеся высоким качеством работы при малой стоимости и простоте.
В
связи с тем, что сейчас существует
широкий выбор различных
Не маловажным является различные датчики, которые нужны для измерения различных данных где порой человеку быть не суждено. Одними из них являются датчики измерения температуры или просто термодатчики. Различают следующие виды датчиков:
1.
Жидкостные термометры. Жидкостные
термометры основаны на
2.
Механические термометры. Термометры
этого типа также по тому
же принципу, что и жидкостные,
но в качестве датчика обычно
используется металлическая
3.
Электрические термометры. Принцип
работы электрических
Электрические термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной элетроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры). Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100(сопротивление при 0°С - 100Ω) PT1000(сопротивление при 0°С - 1000Ω) (IEC751). Температурный диапазон -200 +800°С.
4.
Оптические термометры. Оптические
термометры позволяют
Все термодатчики имеют нелинейную зависимость выходного сигнала от температуры (кроме тех, что были созданы с помощью интегральных микросхем).
В данной курсовой работе представлен процесс создания измерительного преобразователя для датчика термопары. Рассмотрим термопару ТХА(K).
Для построения НСХ - номинальной статистической характеристики (зависимость термо-э.д.с. термопары ТХА(К) от температуры) используем данные ГОСТ 3044-84 «Преобразователи термоэлектрические. Номинальные статические характеристики» (табл. 1).
№ точки | температура рабочего конца, ºС | Т. э. д. с., мВ для температуры, ºС | Т. э. д. с., мВ для температуры, ºС идеальной прямой | погрешность нелинейности |
0 | 600 | 24,902 | 24,902 | 0 |
1 | 610 | 25,327 | 25,30612 | 0,02088 |
2 | 620 | 25,751 | 25,71024 | 0,04076 |
3 | 630 | 26,176 | 26,11436 | 0,06164 |
4 | 640 | 26,599 | 26,51848 | 0,08052 |
5 | 650 | 27,022 | 26,9226 | 0,0994 |
6 | 660 | 27,445 | 27,32672 | 0,11828 |
7 | 670 | 27,867 | 27,73084 | 0,13616 |
8 | 680 | 28,288 | 28,13496 | 0,15304 |
9 | 690 | 28,709 | 28,53908 | 0,16992 |
10 | 700 | 29,128 | 28,9432 | 0,1848 |
11 | 710 | 29,547 | 29,34732 | 0,19968 |
12 | 720 | 29,965 | 29,75144 | 0,21356 |
13 | 730 | 30,383 | 30,15556 | 0,22744 |
14 | 740 | 30,799 | 30,55968 | 0,23932 |
15 | 750 | 31,214 | 30,9638 | 0,2502 |
16 | 760 | 31,629 | 31,36792 | 0,26108 |
17 | 770 | 32,042 | 31,77204 | 0,26996 |
18 | 780 | 32,455 | 32,17616 | 0,27884 |
19 | 790 | 32,866 | 32,58028 | 0,28572 |
20 | 800 | 33,277 | 32,9844 | 0,2926 |
21 | 810 | 33,686 | 33,38852 | 0,29748 |
22 | 820 | 34,095 | 33,79264 | 0,30236 |
23 | 830 | 34,502 | 34,19676 | 0,30524 |
24 | 840 | 34,909 | 34,60088 | 0,30812 |
25 | 850 | 35,314 | 35,005 | 0,309 |
26 | 860 | 35,718 | 35,40912 | 0,30888 |
27 | 870 | 36,121 | 35,81324 | 0,30776 |
28 | 880 | 36,524 | 36,21736 | 0,30664 |
29 | 890 | 36,925 | 36,62148 | 0,30352 |
30 | 900 | 37,325 | 37,0256 | 0,2994 |
31 | 910 | 37,724 | 37,42972 | 0,29428 |
32 | 920 | 38,122 | 37,83384 | 0,28816 |
33 | 930 | 38,519 | 38,23796 | 0,28104 |
34 | 940 | 38,915 | 38,64208 | 0,27292 |
35 | 950 | 39,310 | 39,0462 | 0,2638 |
36 | 960 | 39,703 | 39,45032 | 0,25268 |
37 | 970 | 40,096 | 39,85444 | 0,24156 |
38 | 980 | 40,488 | 40,25856 | 0,22944 |
39 | 990 | 40,879 | 40,66268 | 0,21632 |
40 | 1000 | 41,269 | 41,0668 | 0,2022 |
41 | 1010 | 41,657 | 41,47092 | 0,18608 |
42 | 1020 | 42,045 | 41,87504 | 0,16996 |
43 | 1030 | 42,432 | 42,27916 | 0,15284 |
44 | 1040 | 42,817 | 42,68328 | 0,13372 |
45 | 1050 | 43,202 | 43,0874 | 0,1146 |
46 | 1060 | 43,585 | 43,49152 | 0,09348 |
47 | 1070 | 43,968 | 43,89564 | 0,07236 |
48 | 1080 | 44,349 | 44,29976 | 0,04924 |
49 | 1090 | 44,729 | 44,70388 | 0,02512 |
50 | 1100 | 45,108 | 45,108 | 0 |
Построим
график НСХ термопары ТХА(К) для диапазона
температур от +600 до +1100 ºС с шагом 10ºС,
пользуясь программой Microsoft Excel.
Рис.1.
График зависимости термо-э.д.с. от температуры
для датчика ТХА(К)
Из курса математики задаемся уравнением прямой вида :
- Енач и Екон присваиваем значение и соответственно;
- tнач и tкон присваиваем значение и соответственно.
Рис.2.
Отклонение НСХ от идеальной прямой
Точность учитывает погрешности квантования, нелинейности входных цепей и формирователей, погрешности производственной настройки, шум и кратковременный дрейф параметров. Существуют две разновидности определения точности: абсолютная и относительная точность.
Абсолютная точность – это отношение действительного выходного напряжения преобразователя, соответствующего полной шкале, к его расчетному выходному значению.
В АЦП абсолютная точность определяется тремя видами погрешностей: внутренне присущей преобразователям дискретной погрешностью (±½ единицы младшего разряда) или погрешностью квантования, аналоговой погрешностью, обусловленной низким качеством элементов схемы (она обычно определяется в виде отношения полной погрешности в процентах ко всему суммарному входному сигналу), и апертурной погрешностью.
Погрешность
линейности или нелинейность можно
определить как максимальное отклонение
любой из этих дискретных точек от
прямой линии, проведенной через
крайние точки характеристики преобразования.
Эти крайние точки
Относительная погрешность в АЦП – это максимальное отклонение выходных цифровых кодов от прямой линии, проведенной через нуль и точку, соответствующую полной шкале.
Нелинейность
преобразователя – это
В нашем случае прямая, соединяющая две крайние точки рабочего диапазона датчика 600 и 1100 ºС, является идеальной линейной характеристикой преобразования.
Из графиков (рис.1, рис.2) видно, что максимальное отклонение характеристики датчика от идеальной прямой появляется в значении шкалы 850°С и составляет 0,309.
Такое же значение подтверждают математические вычисления в программе Microsoft Excel (из значений идеальной линейной характеристики вычитаются значения НСХ датчика ТХА(К)).
Относительная погрешность – это разность между номинальным и действительным отношениями аналоговой величины, соответствующей заданному цифровому входному сигналу, к полной шкале, независимо от калибровки последней.
Максимальная
относительная погрешность
или
где
– значение идеальной линейной характеристики преобразования для температуры 850 ºС;
– значение термо-э.д.с. НСХ термопары ТХА(К) для температуры 850 ºС;
– диапазон значений термо-э.д.с. НСХ термопары ТХА(К) для крайних точек характеристики преобразования .
Итак, максимальная относительная погрешность нелинейности (в %) составит:
Наш измерительный преобразователь должен обеспечивать класс точности 0,25. Также измерительный преобразователь должен обеспечивать запас по погрешности, который должен быть не менее 20%., т.е. 20% от 0,25 составляют 0,05 и тогда точность преобразования должна быть лучше 0,2 (0,25 - 0,05= 0,2).
В
нашем случае максимальная погрешность
нелинейности составляет
1,53 %, что больше требуемой (0,2%), поэтому
необходимо провести линеаризацию для
обеспечения заданного класса точности
измерения температуры датчика ТХА(К).