Автор работы: Пользователь скрыл имя, 03 Апреля 2011 в 15:49, реферат
Трудно найти такую отрасль науки и техники, которая так же стремительно развивалась и оказала такое–же огромное влияние на все стороны жизнедеятельности человека, каждого отдельного и общества в целом, как электроника. Как самостоятельное направление науки и техники электроника сформировалась благодаря электронной лампе. Сначала появились радиосвязь, радиовещание, радиолокация, телевидение, затем электронные системы управления, вычислительная техника и т.п.
Введение
1. История изобретения транзистора
2. Первый транзистор
3. Создание биполярного транзистора
4. «Холодная война» и ее влияние на электронику
5. Первые советские транзисторы
6. Полевые транзисторы
7. Область применения транзистора
5. ПЕРВЫЕ СОВЕТСКИЕ ТРАНЗИСТОРЫ
В годы, предшествующие изобретению транзистора, в СССР были достигнуты значительные успехи в создании германиевых и кремниевых детекторов. В этих работах использовалась оригинальная методика исследования приконтактной области путем введения в нее дополнительной иглы, вследствие чего создавалась конфигурация, в точности повторяющая точечный транзистор. Иногда при измерениях выявлялись и транзисторные характеристики (влияние одного «p — n» перехода на другой близко расположенный), но их отбрасывали как случайные и неинтересные аномалии. Мало в чем наши исследователи уступали американским специалистам, не было у них лишь одного — нацеленности на транзистор, и великое открытие выскользнуло из рук. Начиная с 1947 г. интенсивные работы в области полупроводниковых усилителей велись в ЦНИИ-108 (лаб. С. Г. Калашникова) и в НИИ-160 (НИИ «Исток», Фрязино, лаб. А. В. Красилова). В 1948 г., группа А. В. Красилова, разрабатывавшая германиевые диоды для радиолокационный станций, также получила транзисторный эффект и попыталась объяснить его. Об этом в журнале «Вестник информации» в декабре 1948 ими была опубликована статья «Кристаллический триод» — первая публикация в СССР о транзисторах. Напомним, что первая публикация о транзисторе в США в журнале «The Physical Review» состоялась в июле 1948 г., т.е. результаты работ группы Красилова были независимы и почти одновременны. Таким образом научная и экспериментальная база в СССР была подготовлена к созданию полупроводникового триода (термин «транзистор» был введен в русский язык в середине 60-х годов) и уже в 1949 г. лабораторией А. В. Красилова были разработаны и переданы в серийное производство первые советские точечные германиевые триоды С1 — С4. В 1950 г. образцы германиевых триодов были разработаны в ФИАНе (Б.М. Вул, А. В. Ржанов, В. С. Вавилов и др.), в ЛФТИ (В.М. Тучкевич, Д. Н. Наследов) и в ИРЭ АН СССР (С.Г. Калашников, Н. А. Пенин и др.).
В
мае 1953 г. был образован
6.
ПОЛЕВЫЕ ТРАНЗИСТОРЫ
Первый полевой транзистор был запатентован в США в 1926/30гг., 1928/32гг. и 1928/33гг. Лилиенфельд – автор этих потентов. Он родился в 1882 году в Польше. С 1910 по 1926 г. был профессором Лейпцигского университета. В 1926 г. иммигрировал в США и подал заявку на патент. Предложенные Лилиенфельдом транзисторы не были внедрены в производство. Наиболее важная особенность изобретения Лилиенфельда заключается в том, что он понимал работу транзистора на принципе модуляции проводимости исходя из электростатики. В описании к патенту формулируется, что проводимость тонкой области полупроводникового канала модулируется входным сигналом, поступающим на затвор через входной трансформатор. В 1935 году в Англии получил патент на полевой транзистор немецкий изобретатель О.Хейл
Схема из патента представлена на Рис. где:
Управляющий электрод (1) выполняет роль затвора, электрод (3) выполняет роль стока, электрод (4) роль истока. Подавая переменный сигнал на затвор, расположенный очень близко к проводнику, получаем изменение сопротивления полупроводника (2) между стоком и истоком. При низкой частоте можно наблюдать колебание стрелки амперметра (7). Данное изобретение является прототипом полевого транзистора с изолированным затвором. Следующий период волны изобретений по транзисторам наступил в 1939 году, когда после трехлетних изысканий по твердотельному усилителю в фирме "BTL" (Bell Telephone Laboratories) Шокли был приглашен включиться в исследование Браттейна по медноокисному выпрямителю. Работа была прервана второй мировой войной, но уже перед отъездом на фронт Шокли предложил два транзистора. Исследования по транзисторам
Биполярные транзисторы полупроводниковые приборы с большим числом слоёв разного типа электропроводности, расположенных в разном сочетании. Рассмотрим биполярный транзистор.
Принцип действия биполярного транзистора заключается в том, что 2 р-п перехода расположены настолько близко друг к другу, что происходит взаимное их влияние, вследствие чего они усиливают электрические сигналы.
Как показано на рис., это три области – п-, р- и п. (В принципе может быть и наоборот: р-, п-, р-; все рассуждения относительно такого транзистора будут одинаковы, различие только в полярностях напряжений, такой транзистор называется р-п-р, а мы для простоты будем рассматривать п-р-п, изображённый на рис.)
Итак, на рис. изображены три слоя: с электронной электропроводностью, причём сильной, что обозначает плюс - эмиттер, дырочной - база, и снова электронной, но более слабо легированной (концентрация электронов самая малая) – коллектор. Толщина базы, т.е. расстояние между двумя р-п переходами, равное Lб , очень мала. Она должна быть меньше диффузионной длины электронов в базе. Это от единиц до десятка мкм. Толщина базы должна быть не более единиц мкм. (Толщина человеческого волоса 20-50 мкм. Отметим также, что это близко к пределу разрешения человеческого глаза, так как мы не можем видеть ничего меньшего, чем длина волны света, т.е. примерно 0,5 мкм). Все остальные размеры транзистора не более примерно 1 мм.
К
слоям прикладывают внешнее напряжение
так, что эмиттерный р-п переход смещён
в прямом направлении, и через него протекает
большой ток, а коллекторный р-п переход
смещён в противоположную сторону, так
что через него не должен протекать ток.
Однако вследствие того, что р-п переходы
расположены близко, они влияют друг на
друга, и картина меняется: ток электронов,
прошедший из эмиттерного р-п перехода,
протекает дальше, доходит до коллекторного
р-п перехода и электрическим полем последнего
электроны втягиваются в коллектор. В
результате у хороших транзисторов практически
весь ток коллектора равен току эмиттера.
Потери тока очень незначительны: проценты
и даже доли процента.
Обычно в схемах биполярные транзисторы изображаются так:
Как видно, схематическое
изображение совсем не похоже на их
действительную конструкцию. Но так принято.
Кружок символизирует корпус транзистора.
Индексом "б" обозначен контакт к
базе, "к" обозначает контакт к коллекторной
области, а "э" – к эмиттерной области.
Направление стрелки у эмиттерного контакта
определяет тип транзистора (п-р-п или
р-п-р).
Схема с общей базой: Коэффициент усиления a<1
Мы видим, что к эмиттерному р-п переходу приложено прямое смещение: плюс к базовому контакту, а минус к эмиттерному контакту. К коллекторному р-п переходу приложено обратное смещение. В этом случае у хорошего транзистора коллекторный ток лишь незначительно меньше эмиттерного.
Схема с общим
эмиттером
В
этом случае в базу и в эмиттер
подаются напряжения одного знака, но
в базу подаётся не больше 0,7 В, а
в коллектор – 5...15 В. Коэффициент
усиления b>1
7.
ОБЛАСТЬ ПРИМЕНЕНИЯ ТРАНЗИСТОРА
Первыми
транзисторами выпущенными
Затем появились более мощные низкочастотные транзисторы П3 и П4 применение которых в 2-х тактных усилителях позволяло получить выходную мощность до нескольких десятков ватт. По мере развития полупроводниковой промышленности происходило освоение новых типов транзисторов, в том числе П5 и П6, которые по сравнению со своими предшественниками обладали улучшенными характеристиками.
Шло время, осваивались новые методы изготовления транзисторов, и транзисторы П1 – П6 уже не удовлетворяли действующим требованиям и были сняты с производства. Вместо них появились транзисторы типа П13 – П16, П201 – П203, которые тоже относились к низкочастотным не превышающим 100 кГц. Столь низкий частотный предел объясняется способом изготовления этих транзисторов, осуществляемым методом сплавления.
Поэтому
транзисторы П1 – П6, П13 – П16, П201
– П203 называют сплавными. Транзисторы
способные генерировать и усиливать
электрические колебания с
С
появлением биполярных полевых транзисторов
начали воплощаться идеи разработки
малогабаритных ЭВМ. На их основе стали
создавать бортовые электронные
системы для авиационной и
космической техники.
Рис№1
В схеме ОЭ входной сигнал подаётся на базу, а выходной сигнал снимается с коллектора. Схема и выходные характеристики изображены на рис.1Видно, что схема стала очень сложной. Однако главное, что здесь есть – это резистор Rк , который определяет коэффициент усиления по напряжению, и который составляет от единиц кОм до МОм (чем больше этот резистор, тем больше усиление). Все остальные элементы более или менее условны.Прежде всего Rэ необходимо для термостабилизации транзистора. Это осуществляется за счёт обратной связи по постоянному току, которую мы обсудим позже.
Сэ – конденсатор, который шунтирует этот резистор на рабочих частотах, так что при переменном сигнале резистора нет. Этот конденсатор – несколько мкФ. Обычно это электролитический конденсатор.
Ср – разделительные конденсаторы, которые отделяют постоянную составляющую сигнала на входе и выходе схемы от внешних сигналлов. Обычно это несколько мкФ.
Rб1
– важный резистор, управляющий
работой транзистора, служит
Rб2
– практически ненужный
Rн
– сопротивление нагрузки, лучше,
если оно большое, так как
оно подключено параллельно
Uвх – сигнал на входе транзистора. Как видно, на входе много различных деталей – резисторов и конденсаторов. Но на рабочих частотах сопротивления конденсаторов малы, и они хорошо пропускают сигналы. А два параллельных резистора Rб1 и Rб2 достаточно велики по сравнению с входным сопротивлением транзистора. Поэтому учтём только это входное сопротивление.Обычно собственно сопротивления транзистора обозначаются малыми буквами:
rб
– сопротивление базовой
rэ
– сопротивление эмиттерной