Дифференциальные усилители

Автор работы: Пользователь скрыл имя, 27 Мая 2014 в 14:25, реферат

Описание работы

Дифференциа́льный усили́тель — электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу. Применяется в случаях, когда необходимо выделить небольшую разность напряжений на фоне значительной синфазной составляющей.
Выходной сигнал дифференциального усилителя может быть как однофазным, так и дифференциальным. Это определяется схемотехникой выходного каскада.
Транзисторы дифференциального усилителя могут быть биполярными, полевыми или баллистическими. Наиболее высокочастотными (ТГц диапазон) являются дифференциальные усилители на интегральной паре баллистических транзисторов

Файлы: 1 файл

Дифференциальный усилитель.docx

— 80.79 Кб (Скачать файл)

Министерство образования и науки Российской Федерации

ФГБОУ ВПО

Уфимский Государственный Авиационный Технический Университет

 

 

 

 

 

 

Кафедра ФОЭ

 

 

 

 

 

Реферат

 

«Дифференциальные усилители»

 

 

 

 

 

 

 

Выполнил: студен гр.

 Принял: преподователь

 

 

 

 

 

 Дифференциальный усилитель

Дифференциа́льный усили́тель — электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу. Применяется в случаях, когда необходимо выделить небольшую разность напряжений на фоне значительной синфазной составляющей.

Выходной сигнал дифференциального усилителя может быть как однофазным, так и дифференциальным. Это определяется схемотехникой выходного каскада.

Транзисторы дифференциального усилителя могут быть биполярными, полевыми или баллистическими. Наиболее высокочастотными (ТГц диапазон) являются дифференциальные усилители на интегральной паре баллистических транзисторов

Дифференциальный усилитель (ДУ) является одним из основных каскадов операционного усилителя. Простейший ДУ (рис. 7.6, а) состоит из двух одинаковых плеч, каждое из которых содержит транзистор и резистор нагрузки. Эмиттеры транзисторов соединены между собой и через резистор Re подключены к общей шине.

Предположим, что каскад абсолютно симметричен, т.е. сопротивления резисторов и параметры транзисторов, входящих в каждое плечо, одинаковы. Тогда при одинаковых входных сигналах U, и U; токи транзисторов также будут одинаковы, а это означает, что разность потенциалов между коллекторами (точки 1, 2) будет равна нулю. Этот случай, когда оба входных сигнала одинаковы как по амплитуде, так и по фазе, называется режимом усиления синфазного сигнала.

Если на оба входа подать одинаковые по уровню, но разные по фазе сигналы, то в результате ток одного транзистора увеличится, а другого на столько же уменьшится. В этом случае разность потенциалов между коллекторами будет пропорциональна удвоенному значению изменения напряжения на коллекторе транзисторов. При этом через резистор Re будет течь неизменный ток.

Если положительное приращение получит сигнал только на одном входе, например, на первом, это приведет к увеличению коллекторного тока транзистора VT1 и, следовательно, тока через резистор Re. Но увеличение падения напряжения на резисторе Re вызовет уменьшение разности потенциалов между базой и эмиттером транзистора VT2, и его ток уменьшится, причем изменение тока транзистора VT2 будет таково, что приращения напряжений эмиттер-база обоих транзисторов будут одинаковы. Следовательно, при увеличении входного напряжения на некоторую величину потенциал эмиттера увеличится на половину этой величины. При этом приращение напряжения база-эмиттер для обоих транзисторов будет одинаковым, но разного знака. Очевидно, что независимо от того, на какой вход каскада подаются напряжения, токи транзисторов меняются одинаково и приращения их вызваны половиной разности напряжений, приложенных между входами. Это дает основание при анализе дифференциального каскада рассматривать только одну его половину, считая, что к его входу приложено напряжение, равное половине разности напряжений на входах ДУ, а сопротивление в цепи эмиттера Re равно нулю.

Важной характеристикой ДУ является коэффициент подавления синфазного сигнала, который показывает, во сколько раз коэффициент усиления дифференциального входного сигнала, приложенного между входами каскада, больше коэффициента усиления синфазных сигналов, действующих между каждым входом и общей шиной (землей). Анализ показывает [12, 48], что для увеличения коэффициента подавления необходимо увеличивать сопротивление Re, Однако при этом приходится сталкиваться с проблемой обеспечения необходимого режима транзисторов по постоянному току. Трудности заключаются в необходимости увеличения напряжение питания до такой величины, что его реализация становится технически нецелесообразной. Кроме того, на резисторе Re при этом будет бесполезно рассеиваться электрическая мощность, что снижает КПД каскада.

Для устранения этого недостатка вместо резистора Re включают транзистор по схеме с ОЭ (рис. 7.1, б), который выполняет роль источника тока. Выходное сопротивление транзистора VT3 не равно бесконечности и примерно равно дифференциальному сопротивлению коллекторного перехода.

Хотя в идеальном дифференциальном каскаде синфазный входной сигнал не вызывает появления выходного сигнала, в реальном каскаде имеется небольшой выходной сигнал. Он обусловлен неполной идентичностью характеристик транзисторов, коллекторных нагрузок и внутренних сопротивлений источников входных сигналов.

В диапазоне высоких частот существенную роль в разбалансе каскада играют емкости коллекторных переходов. Они являются основной причиной роста усиления синфазного сигнала в диапазоне высоких частот.

Тот факт, что работа ДУ основывается на идентичности его плеч, объясняет популярность этих усилителей в микроэлектронике. Только в интегральных схемах, где .элементы расположены друг от друга на расстояниях десятков микрон, можно обеспечить полную идентичность параметров транзисторов

Дифференциальные усилители используют в тех случаях, когда слабые сигналы можно потерять на фоне шумов. Примерами таких сигналов являются цифровые сигналы, передаваемые по длинным кабелям (кабель обычно состоит из двух скрученных проводов), звуковые сигналы (в радиотехнике понятие «балансный» импедане обычно связывают с дифференциальным импедансом 600 Ом), радиочастотные сигналы (двухжильный кабель является дифференциальным), напряжения электрокардиограмм, сигналы считывания информации из магнитной памяти и многие другие. Дифференциальный усилитель на приемном конце восстанавливает первоначальный сигнал, если синфазные помехи не очень велики. Дифференциальные каскады широко используют при построении операционных усилителей, которые мы рассматриваем ниже. Они играют важную роль при разработке усилителей постоянного тока (которые усиливают частоты вплоть до постоянного тока, т.е. не используют для межкаскадной связи конденсаторы): их симметричная схема по сути своей приспособлена для компенсации температурного дрейфа.

 

На рис. 1 показана основная схема дифференциального усилителя. Выходное напряжение измеряется на одном из коллекторов относительно потенциала земли; такой усилитель называют схемой с однополюсным выходом или разностным усилителем и он распространен наиболее широко. Этот усилитель можно рассматривать как устройство, которое усиливает дифференциальный сигнал и преобразует его в несимметричный сигнал, с которым могут работать обычные схемы (повторители напряжения, источники тока и т. п.). Если же нужен дифференциальный сигнал, то его снимают между коллекторами.

 

1 Классический транзисторный дифференциальный усилитель.

  

  До тех пор пока оба транзистора находятся в активном режиме, потенциал точки А фиксирован. Коэффициент усиления можно определить как и в случае усилителя на одном транзисторе, если заметить, что входной сигнал оказывается дважды приложенным к переходу база-эмиттер любого транзистора: Кдиф = Rк/2(rэ + Rэ). Сопротивление резистора Rэ обычно невелико (100 Ом и меньше), а иногда этот резистор вообще отсутствует. Дифференциальное напряжение обычно усиливается в несколько сотен раз.

Смещение с помощью источника тока.

Усиление синфазного сигнала в дифференциальном усилителе можно значительно уменьшить, если резистор  заменить источником тока. При этом действующее значение сопротивления  станет очень большим, а усиление синфазного сигнала будет ослаблено почти до нуля. Представим себе, что на входе действует синфазный сигнал; источник тока в эмиттерной цепи поддерживает полный эмиттерный ток постоянным, и он (в силу симметрии схемы) равномерно распределяется между двумя коллекторными цепями. Следовательно, сигнал на выходе схемы не изменяется. Пример подобной схемы приведен на рис. 2.70. Для этой схемы, в которой использованы монолитная транзисторная пара типа  (транзисторы и ) и источник тока типа , величина КОСС определяется отношением  дБ). Диапазон входного синфазного сигнала ограничен значениями —12 и ; нижний предел определяется рабочим диапазоном источника тока в эмиттерной цепи, а верхний - коллекторным напряжением покоя.

Рис. 2.70. Увеличение КОСС дифференциального усилителя с помощью источника тока.

Не забывайте о том, что в этом усилителе, как и во всех транзисторных усилителях, должны быть предусмотрены цепи смещения по постоянному току. Если, например, для межкаскадной связи на входе используется конденсатор, то должны быть включены заземленные базовые резисторы. Еще одно предостережение относится в особенности к дифференциальным усилителям без эмиттерных резисторов: биполярные транзисторы могут выдержать обратное смещение на переходе база-эмиттер величиной не более 6 В, затем наступает пробой; значит, если подать на вход дифференциальное входное напряжение большей величины, то входной каскад будет разрушен (при условии, что отсутствуют эмиттерные резисторы). Эмиттерный резистор ограничивает ток пробоя и предотвращает разрушение схемы, но характеристики транзисторов могут в этом случае деградировать (коэффициент , шумы и др.). В любом случае входной импеданс существенно падает, если возникает обратная проводимость.

Применения дифференциальных схем в усилителях постоянного тока с однополюсным выходом.

Дифференциальный усилитель может прекрасно работать как усиnлитель постоянного тока даже с несимметричными (односторонними) входными сигналами. Для этого нужно один из его входов заземлить, а на другой подать сигнал (рис. 2.71). Можно ли исключить «неиспользуемый» транзистор из схемы? Нет. Дифференциальная схема обеспечивает компенсацию температурного дрейфа, и, даже когда один вход заземлен, транзистор выполняет некоторые функции: при изменении температуры напряжения  изменяются на одинаковую величину, при этом не происходит никаких изменений на выходе и не нарушается балансировка схемы. Это значит, что изменение напряжения  не усиливается с коэффициентом Кдиф (его усиление определяется коэффициентом Ксинф, который можно уменьшить почти до нуля). Кроме того, взаимная компенсация напряжений  приводит к тому, что на входе не нужно учитывать падения напряжения величиной 0,6 В. Качество такого усилителя постоянного тока ухудшается только из-за несогласованности напряжений  или их температурных коэффициентов. Промышленность выпускает транзисторные пары и интегральные дифференциальные усилители с очень высокой степенью согласования (например, для стандартной согласованной монолитной пары n-p-n-транзисторов типа  дрейф напряжения  определяется величиной или  за месяц).

Рис. 2.71. Дифференциальный усилитель может работать как прецизионный усилитель постоянного тока с однополюсным выходом.

В предыдущей схеме можно заземлить любой из входов. В зависимости от того, какой вход заземлен, усилитель будет или не будет инвертировать сигнал. (Однако, из-за наличия эффекта Миллера, речь о котором пойдет в разд. 2.19, приведенная здесь схема предпочтительна для диапазона высоких частот). Представленная схема является неинвертирующей, значит, в ней заземлен инвертирующий вход. Терминология, относящаяся к дифференциальным усилителям, распространяется также на операционные усилители, которые представляют собой те же дифференциальные усилители с высоким коэффициентом усиления.

Использование токового зеркала в качестве активной нагрузки.

Иногда желательно, чтобы однокаскадный дифференциальный усилитель, как и простой усилитель с заземленным эмиттером, имел большой коэффициент усиления. Красивое решение дает использование токового зеркала в качестве активной нагрузки усилителя (рис. 2.72). Транзисторы  образуют дифференциальную пару с источником тока в эмиттерной цепи. Транзисторы , образующие токовое зеркало, выступают в качестве коллекторной нагрузки. Тем самым обеспечивается высокое значение сопротивления коллекторной нагрузки, благодаря этому коэффициент усиления по напряжению дрстигает 5000 и выше при условии, что нагрузка на выходе усилителя отсутствует. Такой усилитель используют, как правило, только в схемах, охваченных петлей обратной связи, или в компараторах (их мы рассмотрим в следующем разделе). Запомните, что нагрузка для такого усилителя обязательно должна иметь большой импеданс, иначе усиление будет существенно ослаблено.

Рис. 2.72. Дифференциальный усилитель с токовым зеркалом в качестве активной нагрузки.

Дифференциальные усилители как схемы расщепления фазы.

На коллекторах симметричного дифференциального усилителя возникают сигналы, одинаковые по амплитуде, но с противоположными фазами. Если снимать выходные сигналы с двух коллекторов, то получим схему расщепления фазы. Конечно, можно использовать дифференциальный усилитель с дифференциальными входами и выходами. Дифференциальный выходной сигнал можно затем использовать для управления еще одним дифференциальным усилительным каскадом, величина КОСС для всей схемы при этом значительно увеличивается.

Дифференциальные усилители как компараторы.

Благодаря высокому коэффициенту усиления и стабильным характеристикам дифференциальный усилитель является основной составной частью компаратора - схемы, которая сравнивает входные сигналы и оценивает, какой из них больше. Компараторы используют в самых различных областях: для включения освещения и отопления, для получения прямоугольных сигналов из треугольных, для сравнения уровня сигнала с пороговым значением, в усилителях класса D и при импульсно-кодовой модуляции, для переключения источников питания и т.д. Основная идея при построении компаратора заключается в том, что транзистор должен включаться или выключаться в зависимости от уровней входных сигналов. Область линейного усиления не рассматривается - работа схемы основывается на том, что один из двух входных транзисторов в любой момент находится в режиме отсечки. Типичное применение с захватом сигнала рассматривается в следующем разделе на примере схемы регулирования температуры, в которой используются резисторы, сопротивление которых зависит от температуры (термисторы).

 

 


Информация о работе Дифференциальные усилители