Автор работы: Пользователь скрыл имя, 21 Февраля 2011 в 22:13, курсовая работа
В настоящее время уменьшение количества типов используемых сетей стало тенденцией. Дело в том, что увеличение скорости передачи в локальных сетях до 100 и даже до 1000 Мбит/с требует применения самых передовых технологий, проведения дорогих научных исследований. Естественно, это могут позволить себе только крупнейшие фирмы, которые поддерживают свои стандартные сети и их более совершенные разновидности. К тому же большое количество потребителей уже установило у себя какие-то сети и не желает сразу и полностью заменять сетевое оборудование. В ближайшем будущем вряд ли стоит ожидать того, что будут приняты принципиально новые стандарты.
ВВЕДЕНИЕ………………………………………………………………..3
1 СЕТИ ETHERNET И FAST ETHERNET………………………………5
2 СЕТЬ TOKEN-RING…………………………………………………….9
3 СЕTЬ ARCNET………………………………………………………….14
4 СЕТЬ FDDI………………………………………………………………18
5 СЕТЬ 100VG-AnyLAN………………………………………………….23
6 СВЕРХСКОРОСТНЫЕ СЕТИ………………………………………….25
7 БЕСПРОВОДНЫЕ СЕТИ……………………………………………….31
ЗАКЛЮЧЕНИЕ…………………………………………………………….36
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………39
В нормальном режиме концентраторы соединены в кольцо двумя параллельными кабелями, но передача информации производится при этом только по одному из них.
В случае одиночного повреждения (обрыва) кабеля сеть осуществляет передачу по обоим кабелям, обходя тем самым поврежденный участок. При этом даже сохраняется порядок обхода абонентов, подключенных к концентраторам. Правда, увеличивается суммарная длина кольца.
В случае
множественных повреждений
Несколько концентраторов может конструктивно объединяться в группу, кластер (cluster), внутри которого абоненты также соединены в кольцо. Применение кластеров позволяет увеличивать количество абонентов, подключенных к одному центру, например, до 16 (если в кластер входит два концентратора).
В качестве среды передачи в сети IBM Token-Ring сначала применялась витая пара, как неэкранированная (UTP), так и экранированная (STP), но затем появились варианты аппаратуры для коаксиального кабеля, а также для оптоволоконного кабеля в стандарте FDDI.
Основные технические характеристики классического варианта сети Token-Ring:
Все приведенные характеристики относятся к случаю использования неэкранированной витой пары. Если применяется другая среда передачи, характеристики сети могут отличаться. Например, при использовании экранированной витой пары (STP) количество абонентов может быть увеличено до 260 (вместо 96), длина кабеля – до 100 метров (вместо 45), количество концентраторов – до 33, а полная длина кольца, соединяющего концентраторы – до 200 метров. Оптоволоконный кабель позволяет увеличивать длину кабеля до двух километров.
Сеть Token-Ring в классическом варианте уступает сети Ethernet как по допустимому размеру, так и по максимальному количеству абонентов. Что касается скорости передачи, то в настоящее время имеются версии Token-Ring на скорость 100 Мбит/с (High Speed Token-Ring, HSTR) и на 1000 Мбит/с (Gigabit Token-Ring). Компании, поддерживающие Token-Ring (среди которых IBM, Olicom, Madge), не намерены отказываться от своей сети, рассматривая ее как достойного конкурента Ethernet.
По
сравнению с аппаратурой
Однако в отличие от Ethernet сеть Token-Ring значительно лучше держит высокий уровень нагрузки (более 30—40%) и обеспечивает гарантированное время доступа. Это необходимо, например, в сетях производственного назначения, в которых задержка реакции на внешнее событие может привести к серьезным авариям.[5]
В сети Token-Ring используется классический маркерный метод доступа, то есть по кольцу постоянно циркулирует маркер, к которому абоненты могут присоединять свои пакеты данных. Отсюда следует такое важное достоинство данной сети, как отсутствие конфликтов, но есть и недостатки, в частности необходимость контроля целостности маркера и зависимость функционирования сети от каждого абонента (в случае неисправности абонент обязательно должен быть исключен из кольца).
Интересно, что в более быстрой версии Token-Ring (16 Мбит/с и выше) применяется так называемый метод раннего формирования маркера (ETR – Early Token Release). Он позволяет избежать непроизводительного использования сети в то время, пока пакет данных не вернется по кольцу к своему отправителю. [1]
Сеть Arcnet (или ARCnet от английского Attached Resource Computer Net, компьютерная сеть соединенных ресурсов) – это одна из старейших сетей. Она была разработана компанией Datapoint Corporation еще в 1977 году. Международные стандарты на эту сеть отсутствуют, хотя именно она считается родоначальницей метода маркерного доступа. Несмотря на отсутствие стандартов, сеть Arcnet до недавнего времени (в 1980 – 1990 г.г.) пользовалась популярностью, даже серьезно конкурировала с Ethernet. Большое количество компаний (например, Datapoint, Standard Microsystems, Xircom и др.) производили аппаратуру для сети этого типа. Но сейчас производство аппаратуры Arcnet практически прекращено.
Среди основных достоинств сети Arcnet по сравнению с Ethernet можно назвать ограниченную величину времени доступа, высокую надежность связи, простоту диагностики, а также сравнительно низкую стоимость адаптеров. К наиболее существенным недостаткам сети относятся низкая скорость передачи информации (2,5 Мбит/с), система адресации и формат пакета.[4]
Для передачи информации в сети Arcnet используется довольно редкий код, в котором логической единице соответствует два импульса в течение битового интервала, а логическому нулю – один импульс. Очевидно, что это самосинхронизирующийся код, который требует еще большей пропускной способности кабеля, чем даже манчестерский.
В качестве среды передачи в сети используется коаксиальный кабель с волновым сопротивлением 93 Ом, к примеру, марки RG-62A/U. Варианты с витой парой (экранированной и неэкранированной) не получили широкого распространения. Были предложены и варианты на оптоволоконном кабеле, но и они также не спасли Arcnet.
В качестве топологии сеть Arcnet использует классическую шину (Arcnet-BUS), а также пассивную звезду (Arcnet-STAR). В звезде применяются концентраторы (хабы). Возможно объединение с помощью концентраторов шинных и звездных сегментов в древовидную топологию (как и в Ethernet). Главное ограничение – в топологии не должно быть замкнутых путей (петель). Еще одно ограничение: количество сегментов, соединенных последовательной цепочкой с помощью концентраторов, не должно превышать трех.
Концентраторы бывают двух видов:
Таким образом, топология сети Arcnet имеет следующий вид.
Основные технические характеристики сети Arcnet следующие.
В сети Arcnet используется маркерный метод доступа (метод передачи права), но он несколько отличается от аналогичного в сети Token-Ring. Ближе всего этот метод к тому, который предусмотрен в стандарте IEEE 802.4. Последовательность действий абонентов при данном методе:
Так же, как и в случае Token-Ring, конфликты в Arcnet полностью исключены. Как и любая маркерная сеть, Arcnet хорошо держит нагрузку и гарантирует величину времени доступа к сети (в отличие от Ethernet). Полное время обхода маркером всех абонентов составляет 840 мс. Соответственно, этот же интервал определяет верхний предел времени доступа к сети.
Размер пакета сети Arcnet составляет 0,5 Кбайта. Помимо поля данных в него входят также 8-битные адреса приемника и передатчика и 16-битная циклическая контрольная сумма (CRC). Такой небольшой размер пакета оказывается не слишком удобным при высокой интенсивности обмена по сети.
Адаптеры сети Arcnet отличаются от адаптеров других сетей тем, что в них необходимо с помощью переключателей или перемычек установить собственный сетевой адрес (всего их может быть 255, так как последний, 256-ой адрес применяется в сети для режима широкого вещания). Контроль уникальности каждого адреса сети полностью возлагается на пользователей сети. Подключение новых абонентов становится при этом довольно сложным, так как необходимо задавать тот адрес, который еще не использовался. Выбор 8-битного формата адреса ограничивает допустимое количество абонентов в сети – 255, что может быть недостаточно для крупных компаний.
В результате все это привело к практически полному отказу от сети Arcnet. Существовали варианты сети Arcnet, рассчитанные на скорость передачи 20 Мбит/с, но они не получили широкого распространения.[1]
Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) – это одна из новейших разработок стандартов локальных сетей. Стандарт FDDI был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI. Уровень стандартизации сети достаточно высок.
В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение наиболее перспективного оптоволоконного кабеля. Поэтому в данном случае разработчики не были стеснены рамками старых стандартов, ориентировавшихся на низкие скорости и электрический кабель.
Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). Все это определило популярность сети FDDI, хотя она распространена еще не так широко, как Ethernet и Token-Ring.[1]
За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).
Основные технические характеристики сети FDDI.