Автор работы: Пользователь скрыл имя, 02 Октября 2011 в 16:45, реферат
Руководство крупных компаний испытывает потребность в достоверной информации о различных аспектах бизнеса компании в целях поддержки принятия решений. От этого зависит качество управления компанией, возможность эффективного планирования ее деятельности, выживание в условиях жесткой конкурентной борьбы. При этом критически важными являются наглядность форм представления информации, быстрота получения новых видов отчетности, возможность анализа текущих и исторических данных. Системы, предоставляющие такие возможности, называются Системами Поддержки Принятия Решений (СППР). Они с успехом применяются в самых разных отраслях: телекоммуникациях, финансовой сфере, торговле, промышленности, медицине и многих других.
Введение 2
1. СППР- хранилище данных 3
2. Аналитические системы 6
3. Типы СППР 8
4. Области применения 9
5. Рынок СППР. 11
Заключение 13
Список литературы 15
Содержание
Руководство крупных компаний испытывает потребность в достоверной информации о различных аспектах бизнеса компании в целях поддержки принятия решений. От этого зависит качество управления компанией, возможность эффективного планирования ее деятельности, выживание в условиях жесткой конкурентной борьбы. При этом критически важными являются наглядность форм представления информации, быстрота получения новых видов отчетности, возможность анализа текущих и исторических данных. Системы, предоставляющие такие возможности, называются Системами Поддержки Принятия Решений (СППР). Они с успехом применяются в самых разных отраслях: телекоммуникациях, финансовой сфере, торговле, промышленности, медицине и многих других.
СППР состоят из двух компонент: хранилища данных и аналитических средств. Хранилище данных предоставляет единую среду хранения корпоративных данных, организованных в структурах, оптимизированных для выполнения аналитических операций. Аналитические средства позволяют конечному пользователю, не имеющему специальных знаний в области информационных технологий, осуществлять навигацию и представление данных в терминах предметной области. Для пользователей различной квалификации, СППР располагают различными типами интерфейсов доступа к своим сервисам.
Специфика работы аналитических систем делает практически невозможным их прямое использование на оперативных данных. Это объясняется различными причинами, в том числе разрозненностью данных, хранением их в форматах различных СУБД и в разных "уголках" корпоративной сети, но, что наиболее важно, неприменимостью структур данных оперативных систем для выполнения задач анализа. Для этих целей создается специализированная среда хранения данных, называемая хранилищем данных (Data Warehouse).
Хранилище данных представляет собой банк данных определенной структуры, содержащий информацию о производственном процессе компании в историческом контексте. Главное назначение хранилища - обеспечивать быстрое выполнение произвольных аналитических запросов.
Согласно исследованию META Group, 90 - 95% компаний списка Fortune 2000 активно применяют хранилища данных, чтобы добиться преимущества в конкурентной борьбе и получить значительно большую отдачу от своих инвестиций. Трехлетнее изучение опыта 62 организаций, проведенное International Data Corporation (IDC) показало, что эти организации в среднем получили 400-процентный возврат своих инвестиций в СППР-системы. Перечислим главные преимущества хранилищ данных:
Наряду
с большими корпоративными хранилищами
данных широкое применение находят
также витрины данных (Data Mart). Под
витриной данных понимается небольшое
специализированное хранилище для некоторой
узкой предметной области, ориентированное
на хранение данных, связанных одной бизнес-тематикой.
Проект по созданию витрины данных требует
меньших вложений и выполняется в очень
короткие сроки. Таких витрин данных может
быть несколько, скажем витрина данных
по доходам для бухгалтерии компании и
витрина данных по клиентам для маркетингового
отдела компании.
Аналитические системы СППР позволяют решать три основных задачи: ведение отчётности, анализ информации в реальном времени (OLAP) и интеллектуальный анализ данных.
Отчётность.
Сервис отчётности СППР помогает организации справиться с созданием всевозможных информационных отчетов, справок, документов, сводных ведомостей и пр., особенно когда число выпускаемых отчетов велико и формы отчётов часто меняются. Средства СППР, автоматизируя выпуск отчётов, позволяют перевести их хранение в электронный вид и распространять по корпоративной сети между служащими компании.
OLAP
OLAP
(On-Line Analitycal Processing) - сервис представляет
собой инструмент для анализа
больших объемов данных в
OLAP-системы являются частью более общего понятия Business Intelligence, которое включает в себя помимо традиционного OLAP-сервиса средства организации совместного использования документов, возникающих в процессе работы пользователей хранилища. Технология Business Intelligence обеспечивает электронный обмен отчетными документами, разграничение прав пользователей, доступ к аналитической информации из Интернет и Интранет.
Интеллектуальный анализ данных или «добыча данных» (Data Mining)
При
помощи средств добычи данных можно
проводить глубокие исследования данных.
Эти исследования включают в себя: поиск
зависимостей между данными (напр., “Верно
ли, что рост продаж продукта А обусловлен
ростом продаж продукта В ?” ); выявление
устойчивых бизнес-групп (напр. “Какие
группы клиентов, близких по поведенческим
и другим характеристикам, можно выделить?
Какие характеристики клиентов при этом
оказывают наибольшее влияние на классификацию?“);
прогнозирование поведения бизнес-показателей
(напр. “Какой объем перевозок ожидается
в следущем месяце?“ ); оценка влияния
решений на бизнес компании (напр. “Как
изменится спрос на товар А среди группы
потребителей Б, если снизить цену на товар
С ?“ ); поиск аномалий (напр. “С какими
сегментами клиентской базы связаны наиболее
высокие риски?“).
В зависимости от функционального наполнения интерфейса системы выделяют два основных типа СППР: EIS и DSS.
EIS
(Execution Information System) – информационные
системы руководства
DSS
(Desicion Support System) – полнофункциональные
системы анализа и
Такое
деление систем на два типа не означает,
что построение СППР всегда предполагает
реализацию только одного из этих типов.
EIS и DSS могут функционировать
Телекоммуникации
Телекоммуникационные компании используют СППР для подготовки и принятия комплекса решений, направленных на сохранение своих клиентов и минимизацию их оттока в другие компании. СППР позволяют компаниям более результативно проводить свои маркетинговые программы, вести более привлекательную тарификацию своих услуг.
Анализ записей с характеристиками вызовов позволяет выявлять категории клиентов с похожими стереотипами поведения, с тем чтобы дифференцировано подходить к привлечению клиентов той или иной категории.
Есть
категории клиентов, которые постоянно
меняют провайдеров, реагируя на те или
иные рекламные компании. СППР позволяют
выявить наиболее характерные признаки
«стабильных» клиентов, т.е. клиентов,
длительное время остающихся верными
одной компании, давая возможность ориентировать
свою маркетинговую политику на удержание
именно этой категории клиентов.
Банковское дело
СППР используются для более качественного мониторинга различных аспектов банковской деятельности, таких как обслуживание кредитных карт, займов, инвестиций и так далее, что позволяет значительно повысить эффективность работы.
Выявление
случаев мошенничества, оценка риска
кредитования, прогнозирование изменений
клиентуры – области применения СППР
и методов добычи данных. Классификация
клиентов, выделение групп клиентов со
сходными потребностями позволяет проводить
целенаправленную маркетинговую политику,
предоставляя более привлекательные наборы
услуг той или иной категории клиентов.
Страхование
Набор
применений СППР в страховом бизнесе
можно назвать классическим - это
выявление потенциальных
Обнаружение
определенных стереотипов в заявлениях
о выплате страхового возмещения,
в случае больших сумм, позволяет
сократить число случаев
Анализируя характерные признаки случаев выплат по страховым обязательствам, страховые компании могут уменьшить свои потери. Полученные данные приведут, например, к пересмотру системы скидок для клиентов, подпадающих под выявленные признаки.
Классификация
клиентов дает возможность выявить
наиболее выгодные категории клиентов,
чтобы точнее ориентировать существующий
набор услуг и вводить новые услуги.
Розничная торговля
Торговые компании используют технологии СППР для решения таких задач, как планирование закупок и хранения, анализ совместных покупок, поиск шаблонов поведения во времени.
Анализ данных о количестве покупок и наличии товара на складе в течение некоторого периода времени позволяет планировать закупку товаров, например, в ответ на сезонные колебания спроса на товар.
Часто, покупая какой либо товар покупатель приобретает вместе с ним и другой товар. Выявление групп таких товаров позволяет, например, помещать их на соседних полках, с тем, чтобы повысить вероятность их совместной покупки.
Поиск шаблонов поведения во времени дает ответ на вопрос «Если сегодня покупатель приобрел один товар, то через какое время он купит другой товар?». Например, приобретая фотоаппарат, покупатель, вероятно, в ближайшем будущем станет приобретать пленку, пользоваться услугами по проявке и печати.