Автор работы: Пользователь скрыл имя, 22 Ноября 2011 в 21:08, реферат
Под двойственной задачей понимается вспомогательная задача линейного программирования, формулируемая с помощью определённых правил непосредственно из условий прямой задачи. Заинтересованность в определении оптимального решения прямой задачи путём решения двойственной к ней задачи обусловлена тем, что вычисления при решении ДЗ могут оказаться менее сложными. Трудоёмкость вычислений при решении ЗЛП в большей степени зависит от числа ограничений, а не от количества переменных.
F2:F4 – запас ресурсов;
G2:G4 – плановые расходы ресурсов, получаются в результате решения;
G6 – значение целевой функции, получается в результате решения.
Формулы для вычислений:
G2=СУММПРОИЗВ (B$8:D$8; B2:D2);
G3:G4 – копируются из G2;
G6=СУММПРОИЗВ (B8:D8; B6:D6).
Запишем формулы в ячейки G2:G4. Установить курсор на G2. На панели инструментов выбрать значок формул (f). Появятся два окна. В окне «категория» выбрать «математические», затем в окне «функция» выбрать «СУММПРОИЗВ». Появится окно «СУММПРОИЗВ». В нем нужно указать, где располагаются операнды. Первый операнд – строка B$8:D$8, второй операнд – стока B2:D2. В ячейки G3:G4 формулу скопировать из G2. Аналогичным образом записать формулу целевой функции в ячейку G6. Теперь нужно указать остальные условия решения задачи. Установить курсор на ячейку целевой функции G6. В главном меню выбрать «сервис», а потом «поиск решения». Появится окно, в котором нужно указать:
B8:D8 0 – неотрицательности переменных;
G2:G4 F2:F4 – плановый расход ресурсов меньше их запаса.
Теперь
электронная модель сформирована и
можно решать задачу. Для этого
нужно вернуться в окно «поиск
решения» и нажать «выполнить». Если
электронная модель сформирована правильно,
то будет получено сообщение, что задача
решена. Результат решения находится на
листе EXCEL и в трех отчетах: Результаты,
Устойчивость, Пределы.
Рис. 4.1.4
Основные результаты видны в таблице (рис. 4.1.4.). По сравнению с условиями задачи, показанными на рис. 4.1.3., появились данные:
1. Значение целевой функции в ячейке G6 = 15880;
2. Значения переменных в ячейках B8:D8: х1 = 86, х2 = 0, х3 = 268; это значит, что 1-й продукт должен производиться в объеме 86 единиц, 2-й – 0, а 3-й – 286.
3. Плановый расход ресурсов в ячейках G2:G4: расход 1-го ресурса = 271,6, расход 2-го ресурса = 310, расход 3-го ресурса = 2200.
Как видно 1-й ресурс недоиспользован, а 2-й и 3-й израсходованы полностью.
Кроме
результатов в электронной
Отчет по результатам
Целевая ячейка (максимум)
Ячейка Имя Исходно Результат
$G$6 Цены
ЦФ 15880
Изменяемые Ячейки
Ячейка Имя Исходно Результат |
$B$8 Перем Пр1 0 86 |
$C$8 Перем Пр2 0 0 |
$D$8 Перем Пр3 0 268 |
Ограничения
Ячейка Имя Значение Формула Статус Разница |
$G$2 Рес 1 Расход 271,6 $G$2 $F$2 не связан 228,4 |
$G$3 Рес 2 Расход 310 $G$3$F$3 связанное 0 |
$G$4 Рес 3 Расход 2200 $G$4 $F$4 связанное 0 |
$B$8 Перем Пр1 86 $B$80 не связан 86 |
$C$8 Перем Пр2 0 $C$8 0 связанное 0 |
$D$8 Перем Пр3 268 $D$8 0 не связан 268 |
Рис. 4.1.5
1-я таблица – целевая ячейка – дает значение целевой функции, которая уже имеется в таблице EXCEL, значит, эти данные избыточны.
2-я таблица – изменяемые ячейки – дает значение переменных, которые уже имеются в таблице EXCEL, эти данные тоже избыточны.
3-я таблица – ограничения – дает оценку ограничений. Колонка «значение» дает значения планового расхода ресурсов и переменных – эти данные имеются в таблице EXCEL и здесь избыточны. Столбец «статус» значением «связанное» отмечает ограничения (не больше или не меньше), которые в результате решения превратились в строгие равенства, прочие ограничения имеют статус «несвязанные». Столбец «разница» показывает, на какую величину ограничения отклонились от строгого равенства. Так, например, ограничение 1-го ресурса 500, плановое значение 271,6, разница = 500 – 271,6 = 228,4.
Отчет по устойчивости изображен на рис. 4.1.6. Он состоит из двух таблиц.
Отчет
по устойчивости
Изменяемые ячейки
Ячейка
Имя Результат Норир.
Значение градиент |
$B$8 Перем Пр1 86 0 |
$C$8 Перем Пр2 0 -22,8 |
$D$8 Перем Пр3 268 0 |
Ограничения
Ячейка
Имя Результат. Лагранжа
значение Множитель |
$G$2 Рес 1 Расход 271,6 0 |
$G$3 Рес 2 Расход 310 20 |
$G$4 Рес 3 Расход 2200 4,4 |
Рис. 4.1.6
Таблица
«изменяемые ячейки» показывает
значения переменных, которые уже имеются
в таблице EXCEL. Столбец «нормируемый градиент»
показывает, как влияет увеличение переменных
на единицу на величину целевой функции.
Таблица «ограничения» содержит важную
информацию в столбце «Лагранжа множители».
Эти величины в литературе имеют различные
названия: объективно обусловленные оценки
(О.О.О.) по Л. Канторовичу, двойственные
оценки по Д. Данцигу, оптимальные цены,
теневые цены и другие. В дальнейшем будем
называть их наиболее распространенным
именем – двойственные оценки и обозначать
– vi, где i – номер ограничения.
В данном примере v1 = 0, v2
= 20,0, v3 = 4,4. Отчет по пределам
показан на рис. 4.1.7.
Отчет по пределам
Ячейка
Целевое Значение
имя |
$G$6 Цены ЦФ 15880 |
Ячейка Изменяемое Значение имя | Нижний Целевой
предел результат |
Нижний Целевой
предел результат |
$B$8 Перем Пр1 86 | 0 10720 | 86 15880 |
$C$8 Перем Пр2 0 | 0 15880 | 0 15880 |
$D$8 Перем Пр3 268 | 0 5160 | 268 15880 |
Рис. 4.1.7.
В этом отчете уже в третий раз дается значение целевой функции 15880, в пятый раз значение переменных (х1 = 86, х2 = 0, х3 = 268). Нижний предел для всех переменных = 0, так, установлены ограничения по переменным. Верхний предел равен соответственно 86, 0 и 268, так устанавливают ограничения по ресурсам. Целевой результат показывает значение целевой функции при соответствующих значениях переменных. Если х1 = 0, то ЦФ = 10720 и т.д.
Запишем
математическую модель рассмотренной
задачи в общем виде:
Пусть:
В-бюджет,
т.е. количество денег, которое можно израсходовать
на приобретение ресурсов для производства
продукции, а si – рыночная
цена i-го ресурса. Тогда единственное
ограничение по ресурсам будет выглядеть
следующим образом:
.
Смысл этого ограничения - нельзя израсходовать ресурсов на сумму больше, чем В.
Здесь: - расход i-го ресурса в натуральном выражении по j-му технологическому способу;
- расход i-го ресурса в натуральном выражении по всем способам;
- суммарная цена i-го ресурса, израсходованного по всем способам;
- суммарная цена всех ресурсов по всем технологическим способам.
Решим
задачу на максимум продукции с ограничением
по бюджету. За основу возьмем электронную
модель на рис. 4.1.3. и дополним ценами ресурсов
si и бюджетом В (рис. 4.1.8)
Рис. 4.1.8
Дополнительные величины:
H2:H4 – цены ресурсов (задаются);
I2:I4 – издержки (вычисляются);
I2 = G2*H2;
I3:I4 – копируется из I2;
H6 = 5000 – бюджет (задается);
I6 – издержки всего (вычисляются);
I6 = СУММ (I2:I4).
Ограничения:
B8:D8 0 – неотрицательности переменных;
I6 H6 – совокупные издержки не больше бюджета.
Будет получено решение
x1 = 0; x2 = 0; x3 = 409,84.
v = 3,08 – двойственная оценка ограничения по бюджету – увеличение бюджета на единицу увеличивает валовой продукт на 3,28.
Если ограничения по ресурсам в модели имеют смысл и не больше ( ) и не меньше ( ), причем все величины ( ) не отрицательные, то в общем случае вывод о существовании или отсутствии допустимого плана сделать нельзя. Все зависит от конкретных значений величин и . Возможен случай, когда для некоторого k-го ресурса установлено такое ограничение , что оно не может быть выполнено из-за других ограничений. Тогда нет ни одного допустимого плана.
Информация о работе Прямые и двойственные задачи линейного программирования