Автор работы: Пользователь скрыл имя, 03 Апреля 2011 в 15:41, курсовая работа
Цель данной работы - проследить историю развития персонального компьютера.
Для достижения поставленной цели были решены следующие задачи:
1. Изучить историю развития персонального компьютера начиная с появления первых ЭВМ;
2. Проанализировать этапы развития компьютеров;
3. Рассмотреть развитие персональных компьютеров в России.
ВВЕДЕНИЕ……………………………………………………………………….3
ГЛАВА 1. ИСТОРИЯ СОЗДАНИЯ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА….5
1.1. История вычислительных машин…………………………………….7
1.2. Появление персональных компьютеров……………………………13
1.3. Персональные компьютеры будущего…………………………….. 16
ГЛАВА 2. ПОЯВЛЕНИЕ И РАЗВИТИЕ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА В РОССИИ……………………………………………………………………….20
ЗАКЛЮЧЕНИЕ………………………………………………………………….27
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ (БИБЛИОГРАФИЯ)……………………………………………………………..29
Вслед за первым серийным компьютером UNIVAC-1 фирма Remington-Rand в 1952 г. выпустила ЭВМ UNIVAC-1103, которая работала в 50 раз быстрее. Позже в компьютере UNIVAC-1103 впервые были применены программные прерывания14.
Сотрудники фирмы Rernington-Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (пррвый интерпретатор, созданный R 1949 г. Джоном Мочли). Кроме того, необходимо отметить офицера ВМФ США и руководителя группы программистов, в то время капитана (в дальнейшем единственная в ВМФ женщина-адмирал) Грейс Хоппер, которая разработала первую программу-компилятор. Кстати, термин «компилятор» впервые ввела Г. Хоппер в 1951 г. Эта компилирующая программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме. Г. Хоппер принадлежит также авторство термина «баг» в применении к компьютерам. Как-то через открытое окно в лабораторию залетел жук (по-английски — bug), который, сев на контакты, замкнул их, чем вызвал серьезную неисправность в работе машины. Обгоревший жук был подклеен в административный журнал, где фиксировались различные неисправности. Так был задокументирован первый баг в компьютерах15.
Фирма
IBM сделала первые шаги в области
автоматизации
В
Великобритании в июле 1951 г. на конференции
в Манчестерском университете М.
Уилкс представил доклад «Наилучший
метод конструирования
Свою идею микропрограммирования М. Уилкс реализовал в 1957 г. при создании машины EDSAC-2. М. Уилкс совместно с Д. Уиллером и С. Гиллом в 1951 г. написали первый учебник по программированию «Составление программ для электронных счетных машин»16.
Вначале микропроцессоры использовались в различных специализированных устройствах, например в калькуляторах. Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т. е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя. В начале 1975 г. появился первый коммерчески распространяемый персональный компьютер «Альтаир-8800» на основе микропроцессора Intel-8080. Этот компьютер продавался по цене около 500 долл. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т. д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало росту популярности персональных компьютеров17.
Успех «Альтаир-8800» заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы практического значения. Появились и коммерчески распространяемые программы, например программа для редактирования текстов WordStar и табличный процессор VisiCalc (1978 г. и 1979 г. соответственно)18. Эти и многие другие программы сделали покупку персональных компьютеров весьма выгодной для бизнеса: с их помощью стало возможно выполнять бухгалтерские расчеты, составлять документы и т. д. Использование же больших компьютеров для этих целей было слишком дорого.
В конце 1970-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM — ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров. Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание персонального компьютера всего лишь как мелкий эксперимент — что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.
В качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088. Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 мегабайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 килобайтами.
В августе 1981 г. новый компьютер под названием IBM PC был официально представлен публике, и вскоре после этого он приобрел большую популярность у пользователей. Через пару лет компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров19.
Секрет популярности IBM PC в том, что фирма IBM не сделала свой компьютер единым неразъемным устройством и не стала защищать его конструкцию патентами. Наоборот, она собрала компьютер из независимо изготовленных частей и не стала держать спецификации этих частей и способы их соединения в секрете. Напротив, принципы конструкции IBM PC были доступны всем желающим. Этот подход, называемый принципом открытой архитектуры, обеспечил потрясающий успех компьютеру IBM PC, хотя и лишил фирму IBM возможности единолично пользоваться плодами этого успеха. Вот как открытость архитектуры IBM PC повлияла на развитие персональных компьютеров.
Перспективность и популярность IBM PC сделала весьма привлекательным производство различны;; комплектующих и дополнительных устройств для IBM PC. Конкуренция между производителями привела к удешевлению комплектующих и устройств. Очень скоро многие фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать компьютеры, совместимые с IBM PC. Поскольку этим фирмам не требовалось нести огромные издержки фирмы IBM на исследования и поддержание структуры громадной фирмы, они смогли продавать свои компьютеры значительно дешевле (иногда в 2—3 раза) аналогичных компьютеров фирмы IBM. Совместимые с IBM PC компьютеры вначале презрительно называли «клонами», но эта кличка не прижилась, так как многие фирмы-производители IBM PC-совместимых компьютеров стали реализовывать технические достижения быстрее, чем сама IBM. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами сотен различных производителей20.
Основой компьютеров будущего станут не кремниевые транзисторы, где передача информации осущевляется электронами, а оптические системы. Носителем информации станут фотоны, так как они легче и быстрее эле в тронов. В результате компьютер станет более дешевым и 5 злее компактным. Но самое главное, что оптоэлектронное з лчисление гораздо быстрее, чем то, что применяется сегодня, поэтому компьютер будет намного производительнее.
ПК будет мал по размерам и иметь мощь современных суперкомпьютеров. ПК станет хранилищем информации, охватывающей все аспекты нашей повседневной жизни, он не будет привязан к электрическим сетям. Этот ПК будет защищен от воров благодаря биометрическому сканеру, юторый будет узнавать своего владельца по отпечатку пальца
Основным способом общения с компьютером будет голосовой. Настольный компьютер превратится Е СТОЛ, вернее, последний превратится в гигантский компьютерный экран — интерактивный фотонный дисплей. Клавиатура не понадобится, так как все действия можно будет совершите прикосновением пальца. Но для тех, кто предпочитает клавиатуру, в любой момент на экране может быть создана виртуальная клавиатура и удалена тогда, когда в ней не будет нужды21.
Компьютер станет операционной системой дома, и дом начнет реагировать на потребности хозяина, будет знать его предпочтения (приготовить кофе в 7 часов, запустить любимую музыку, записать нужную телепередачу, отрегулировать температуру и влажность и т. д.)
Жесткий диск будет голографическим и чем-то будет походить на CD-ROM или DVD. То есть это будет прозрачная вращающаяся пластинка с записывающим лазером с одной стороны и считывающим лазером с другой; объем хранимой информации на таком диске будет достигать просто астрономических величин — несколько терабайт. При таких объемах можно будет хранить каждую мельчайшую деталь жизни22.
Процессор ПК будущего будет функционировать по тем же принципам, что и сегодня. Но вместо электронных микропроцессоров, которые являются и мозгом, и мускулами современного компьютера, процессор будущего будет иметь опто-электронные интегральные схемы (чипы будут использовать кремний там, где требуется переключение, и оптику для коммуникаций). Это даст огромный прирост в быстродействии и эффективности. Сегодняшний компьютер тратит слишком много времени на ожидание данных для обработки. Мгновенная оптическая связь и память, работающая так же быстро, как и процессор, обеспечат непрерывный поток данных процессору для обработки. При передаче данных со скоростью, не ограниченной больше электронной передачей, можно будет достигнуть частот порядка 100 ГГц, то есть в 100 раз быстрее, чем сегодня23.
Процессор будущего может быть шестигранником, окруженным со всех сторон быстрым кэшем так, чтобы требуемые данные могли быть выбраны из ближайшей части кэша. Именно таким образом и будет достигнута производительность сегодняшних супер-ЭВМ
При применении оптической связи в компьютерных технологиях будет получен тот самый эффект, который наблюдали в 1980 г., когда компьютеры на базе 80286 имели память, работающую на частоте процессора. Скорость шины памяти — та скорость, с которой происходит обмен данными между процессором и памятью, — была равна частоте процессора (всего 8 МГц). Процессор получал данные так же быстро, как мог их обработать, в результате процессор меньше находился в режиме ожидания данных.
Средний
компьютер сегодня имеет
Оптоэлектроника решит эту проблему. При должным образом разработанной шине оптической памяти скорость выборки данных из памяти будет снова приравнена к частоте процессора.
Конечно, это потребует более быстрой обработки данных в памяти и, соответственно, другой, более быстрой, архитектуры памяти, которая, к счастью, уже есть или в скором времени будет. Большой кэш сверхбыстрой энергонезависимой магнитной RAM (память с произвольным доступом) будет содержать данные, срочно требующиеся процессору.
Для нового быстрого кэша придется избавиться от неэффективности сегодняшней синхронной динамической памяти, нуждающейся в постоянном обновлении. Неэффективность кэша сегодня такова, что две трети времени уходит на процессы обновления (таким образом, его реальная производительность в три раза меньше).
Полупроводниковая технология будущего будет основана не на кремниевой памяти, а на магнитной памяти в молекулярном масштабе. Так как мельчайшие элементы будут намагничены для представления нулей и размагничены для представления единиц, информация может быть легко и быстро обновлена простым электрическим сигналом. Весь процесс будет гораздо быстрее того, что мы имеем сегодня, и будет вполне реально удовлетворять требования процессора, работающего на частоте 100 ГГц.
Основная память компьютера будет вполне оптической, фактически голографической. Голографическая память имеет трехмерную природу, и можно эшелонировать любое количество плоскостей памяти в прямоугольное твердое тело. Объем чипа в 256 ГБ легко достижим.
Компьютер будущего будет практически независим от источников электропитания. Одно из самых больших преимуществ фотонных цепей — крайне малое энергопотребление. Небольшая, но длинная, подобная стержню литиевая батарея, изогнутая в тороид и установленная в компьютер, будет функционировать пару недель. А подзарядить ее можно будет так же легко, как сегодня подзарядить сотовый телефон.
Информация о работе Появление и развитие персонального компьютера в России