Появление и развитие персонального компьютера в России

Автор работы: Пользователь скрыл имя, 03 Апреля 2011 в 15:41, курсовая работа

Описание работы

Цель данной работы - проследить историю развития персонального компьютера.

Для достижения поставленной цели были решены следующие задачи:

1. Изучить историю развития персонального компьютера начиная с появления первых ЭВМ;

2. Проанализировать этапы развития компьютеров;

3. Рассмотреть развитие персональных компьютеров в России.

Содержание работы

ВВЕДЕНИЕ……………………………………………………………………….3

ГЛАВА 1. ИСТОРИЯ СОЗДАНИЯ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА….5
1.1. История вычислительных машин…………………………………….7
1.2. Появление персональных компьютеров……………………………13
1.3. Персональные компьютеры будущего…………………………….. 16
ГЛАВА 2. ПОЯВЛЕНИЕ И РАЗВИТИЕ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА В РОССИИ……………………………………………………………………….20

ЗАКЛЮЧЕНИЕ………………………………………………………………….27

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ (БИБЛИОГРАФИЯ)……………………………………………………………..29

Файлы: 1 файл

Информатика и математика.doc

— 152.00 Кб (Скачать файл)

     Вслед за первым серийным компьютером UNIVAC-1 фирма Remington-Rand в 1952 г. выпустила ЭВМ UNIVAC-1103, которая работала в 50 раз быстрее. Позже в компьютере UNIVAC-1103 впервые были применены программные прерывания14.

     Сотрудники  фирмы Rernington-Rand использовали алгебраическую форму записи алгоритмов под названием  «Short Code» (пррвый интерпретатор, созданный R 1949 г. Джоном Мочли). Кроме того, необходимо отметить офицера ВМФ США и руководителя группы программистов, в то время капитана (в дальнейшем единственная в ВМФ женщина-адмирал) Грейс Хоппер, которая разработала первую программу-компилятор. Кстати, термин «компилятор» впервые ввела Г. Хоппер в 1951 г. Эта компилирующая программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме. Г. Хоппер принадлежит также авторство термина «баг» в применении к компьютерам. Как-то через открытое окно в лабораторию залетел жук (по-английски — bug), который, сев на контакты, замкнул их, чем вызвал серьезную неисправность в работе машины. Обгоревший жук был подклеен в административный журнал, где фиксировались различные неисправности. Так был задокументирован первый баг в компьютерах15.

     Фирма IBM сделала первые шаги в области  автоматизации программирования, создав в 1953 г. для машины IBM 701 «Систему быстрого кодирования». В СССР А. А. Ляпунов  предложил один из первых языков программирования. В 1957 г. группа под руководством Д. Бэкуса завершила работу над ставшим впоследствии популярным первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

     В Великобритании в июле 1951 г. на конференции  в Манчестерском университете М. Уилкс представил доклад «Наилучший метод конструирования автоматической машины», который стал пионерской работой  по основам микропрограммирования. Предложенный им метод проектирования устройств управления нашел широкое применение.

     Свою  идею микропрограммирования М. Уилкс  реализовал в 1957 г. при создании машины EDSAC-2. М. Уилкс совместно с Д. Уиллером и С. Гиллом в 1951 г. написали первый учебник  по программированию «Составление программ для электронных счетных машин»16.

     В 1956 г. фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН было устранено  различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

     1.2. Появление персональных  компьютеров

     Вначале микропроцессоры использовались в  различных специализированных устройствах, например в калькуляторах. Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т. е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя. В начале 1975 г. появился первый коммерчески распространяемый персональный компьютер «Альтаир-8800» на основе микропроцессора Intel-8080. Этот компьютер продавался по цене около 500 долл. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т. д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало росту популярности персональных компьютеров17.

     Успех «Альтаир-8800» заставил многие фирмы  также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы практического значения. Появились и коммерчески распространяемые программы, например программа для редактирования текстов WordStar и табличный процессор VisiCalc (1978 г. и 1979 г. соответственно)18. Эти и многие другие программы сделали покупку персональных компьютеров весьма выгодной для бизнеса: с их помощью стало возможно выполнять бухгалтерские расчеты, составлять документы и т. д. Использование же больших компьютеров для этих целей было слишком дорого.

     В конце 1970-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM — ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров. Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание персонального компьютера всего лишь как мелкий эксперимент — что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.

     В качестве основного микропроцессора  компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088. Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 мегабайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 килобайтами.

     В августе 1981 г. новый компьютер под  названием IBM PC был официально представлен  публике, и вскоре после этого  он приобрел большую популярность у  пользователей. Через пару лет компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров19.

     Секрет  популярности IBM PC в том, что фирма IBM не сделала свой компьютер единым неразъемным устройством и не стала защищать его конструкцию  патентами. Наоборот, она собрала  компьютер из независимо изготовленных  частей и не стала держать спецификации этих частей и способы их соединения в секрете. Напротив, принципы конструкции IBM PC были доступны всем желающим. Этот подход, называемый принципом открытой архитектуры, обеспечил потрясающий успех компьютеру IBM PC, хотя и лишил фирму IBM возможности единолично пользоваться плодами этого успеха. Вот как открытость архитектуры IBM PC повлияла на развитие персональных компьютеров.

     Перспективность и популярность IBM PC сделала весьма привлекательным производство различны;; комплектующих и дополнительных устройств для IBM PC. Конкуренция между производителями привела к удешевлению комплектующих и устройств. Очень скоро многие фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать компьютеры, совместимые с IBM PC. Поскольку этим фирмам не требовалось нести огромные издержки фирмы IBM на исследования и поддержание структуры громадной фирмы, они смогли продавать свои компьютеры значительно дешевле (иногда в 2—3 раза) аналогичных компьютеров фирмы IBM. Совместимые с IBM PC компьютеры вначале презрительно называли «клонами», но эта кличка не прижилась, так как многие фирмы-производители IBM PC-совместимых компьютеров стали реализовывать технические достижения быстрее, чем сама IBM. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами сотен различных производителей20.

     1.3. Персональные компьютеры будущего

 

 

     Основой компьютеров будущего станут не кремниевые транзисторы, где передача информации осущевляется электронами, а оптические системы. Носителем информации станут фотоны, так как они легче и быстрее эле в тронов. В результате компьютер станет более дешевым и 5 злее компактным. Но самое главное, что оптоэлектронное з лчисление гораздо быстрее, чем то, что применяется сегодня, поэтому компьютер будет намного производительнее.

     ПК  будет мал по размерам и иметь  мощь современных суперкомпьютеров. ПК станет хранилищем информации, охватывающей все аспекты нашей повседневной жизни, он не будет привязан к электрическим сетям. Этот ПК будет защищен от воров благодаря биометрическому сканеру, юторый будет узнавать своего владельца по отпечатку пальца

     Основным  способом общения с компьютером  будет голосовой. Настольный компьютер  превратится Е СТОЛ, вернее, последний превратится в гигантский компьютерный экран — интерактивный фотонный дисплей. Клавиатура не понадобится, так как все действия можно будет совершите прикосновением пальца. Но для тех, кто предпочитает клавиатуру, в любой момент на экране может быть создана виртуальная клавиатура и удалена тогда, когда в ней не будет нужды21.

     Компьютер станет операционной системой дома, и  дом начнет реагировать на потребности  хозяина, будет знать его предпочтения (приготовить кофе в 7 часов, запустить  любимую музыку, записать нужную телепередачу, отрегулировать температуру и влажность и т. д.)

     Жесткий диск будет голографическим и  чем-то будет походить на CD-ROM или DVD. То есть это будет прозрачная вращающаяся  пластинка с записывающим лазером  с одной стороны и считывающим лазером с другой; объем хранимой информации на таком диске будет достигать просто астрономических величин — несколько терабайт. При таких объемах можно будет хранить каждую мельчайшую деталь жизни22.

     Процессор ПК будущего будет функционировать  по тем же принципам, что и сегодня. Но вместо электронных микропроцессоров, которые являются и мозгом, и мускулами современного компьютера, процессор будущего будет иметь опто-электронные интегральные схемы (чипы будут использовать кремний там, где требуется переключение, и оптику для коммуникаций). Это даст огромный прирост в быстродействии и эффективности. Сегодняшний компьютер тратит слишком много времени на ожидание данных для обработки. Мгновенная оптическая связь и память, работающая так же быстро, как и процессор, обеспечат непрерывный поток данных процессору для обработки. При передаче данных со скоростью, не ограниченной больше электронной передачей, можно будет достигнуть частот порядка 100 ГГц, то есть в 100 раз быстрее, чем сегодня23.

     Процессор будущего может быть шестигранником, окруженным со всех сторон быстрым кэшем так, чтобы требуемые данные могли быть выбраны из ближайшей части кэша. Именно таким образом и будет достигнута производительность сегодняшних супер-ЭВМ

     При применении оптической связи в компьютерных технологиях будет получен тот самый эффект, который наблюдали в 1980 г., когда компьютеры на базе 80286 имели память, работающую на частоте процессора. Скорость шины памяти — та скорость, с которой происходит обмен данными между процессором и памятью, — была равна частоте процессора (всего 8 МГц). Процессор получал данные так же быстро, как мог их обработать, в результате процессор меньше находился в режиме ожидания данных.

     Средний компьютер сегодня имеет процессор 1000 МГц и шину 133 МГц. Несмотря на различные технологические подвиги, процессор все еще тратит две трети времени на ожидание данных.

     Оптоэлектроника решит эту проблему. При должным образом разработанной шине оптической памяти скорость выборки данных из памяти будет снова приравнена к частоте процессора.

     Конечно, это потребует более быстрой  обработки данных в памяти и, соответственно, другой, более быстрой, архитектуры памяти, которая, к счастью, уже есть или в скором времени будет. Большой кэш сверхбыстрой энергонезависимой магнитной RAM (память с произвольным доступом) будет содержать данные, срочно требующиеся процессору.

     Для нового быстрого кэша придется избавиться от неэффективности сегодняшней синхронной динамической памяти, нуждающейся в постоянном обновлении. Неэффективность кэша сегодня такова, что две трети времени уходит на процессы обновления (таким образом, его реальная производительность в три раза меньше).

     Полупроводниковая технология будущего будет основана не на кремниевой памяти, а на магнитной  памяти в молекулярном масштабе. Так  как мельчайшие элементы будут намагничены  для представления нулей и  размагничены для представления  единиц, информация может быть легко и быстро обновлена простым электрическим сигналом. Весь процесс будет гораздо быстрее того, что мы имеем сегодня, и будет вполне реально удовлетворять требования процессора, работающего на частоте 100 ГГц.

     Основная  память компьютера будет вполне оптической, фактически голографической. Голографическая память имеет трехмерную природу, и можно эшелонировать любое количество плоскостей памяти в прямоугольное твердое тело. Объем чипа в 256 ГБ легко достижим.

     Компьютер будущего будет практически независим от источников электропитания. Одно из самых больших преимуществ фотонных цепей — крайне малое энергопотребление. Небольшая, но длинная, подобная стержню литиевая батарея, изогнутая в тороид и установленная в компьютер, будет функционировать пару недель. А подзарядить ее можно будет так же легко, как сегодня подзарядить сотовый телефон.

Информация о работе Появление и развитие персонального компьютера в России