Автор работы: Пользователь скрыл имя, 11 Сентября 2011 в 10:03, курсовая работа
Многопроцессорные системы (Операционные системы UNIX)»Прошло немногим более 50 лет с момента появления первых электронных вычислительных машин - компьютеров. За это время сфера их применения охватила практически все области человеческой деятельности. Сегодня невозможно представить себе эффективную организацию работы без применения компьютеров в таких областях, как планирование и управление производством, проектирование и разработка сложных технических устройств, издательская деятельность, образование - словом, во всех областях, где возникает необходимость в обработке больших объемов информации.
Введение
Структура и специфика многопроцессорных систем
История появления и развития многопроцессорных систем
Общая структура многопроцессорной системы
Спецификация аппаратных средств многопроцессорной системы
Операционные системы для работы с многопроцессорными системами
Первые операционные системы для работы в многопроцессорной конфигурации
Виды многопроцессорных систем и операционные системы для работы с ними
Операционная система UNIX в многопроцессорной конфигурации
Общий обзор особенностей системы UNIX
Преимущества операционная система UNIX
Недостатки операционная система UNIX
Cистемы UNIX в многопроцессорной конфигурации
Проблемы, связанные с многопроцессорными системами и решение их в операционной системе UNIX
Заключение
Список используемой литературы
Успеху Niagara способствовало то, что в Sun велась собственная разработка двухъядерного процессора MAJC 5200, где каждое ядро способно обрабатывать четыре потока команд. Процессор UltraSPARC T1 является конвергенцией Hydra и MAJC 5200.
У IBM разработки многоядерных процессоров заметно связаны с производством игр. Так, процессор Xenon предназначен для игровой консоли. Другой проект, Cell, включает двухпотоковое ядро SMT Power и восемь ядер, которые называют синергетическими процессорными элементами (Synergistic Processing Element, SPE), работающими по принципу SIMD. Основное ядро Power выполняет команды из системы команд PowerPC, поддерживая специализированную систему команд SPE. С очевидным опозданием свои предложения сделали корпорации AMD и Intel: борьба на многоядерном поле стала и для производителей процессоров архитектуры x86 одним из самых актуальных вопросов сегодняшнего дня.
При построении многопроцессорной архитектуры может использоваться одна из нескольких концептуальных моделей соединения вычислительных элементов.
На рис.2 показана общая структура МП-системы: связанная архитектура с общей памятью с распределенной обработкой данных и прерываний ввода-вывода. Она полностью симметрична; т. е. все процессоры функционально идентичны и имеют одинаковый статус, и каждый процессор может обмениваться с каждым другим процессором. Симметричность имеет два важных аспекта: симметричность памяти и ввода-вывода.
Память симметрична, если все процессоры совместно используют общее пространство памяти и имеют в этом пространстве доступ с одними и теми же адресами. Симметричность памяти предполагает, что все процессоры могут исполнять единственную копию ОС.
Требование симметричности ввода-вывода выполняется, если все процессоры имеют возможность доступа к одним и тем же подсистемам ввода-вывода, причем любой процессор может получить прерывание от любого источника.
Рис.2 Архитектура многопроцессорной системы.
Основные компоненты
Системные процессоры. В целях обеспечения совместимости с существующими программными средствами, спецификация основывается на процессорах семейства Intel 486 или Pentium. Хотя все процессоры в МП-системе функционально идентичны, спецификация выделяет два их типа: загрузочный процессор(BSP) и прикладные процессоры(AP). Какой процессор играет роль загрузочного, определяется аппаратными средствами или совместно аппаратурой и BIOS. Это сделано для удобства и имеет значение только во время инициализации и выключения. BSP-процессор отвечает за инициализацию системы и за загрузку ОС. AP-процессор активизируется после загрузки ОС.
Контроллеры APIC. Данные контроллеры обладают распределенной архитектурой, в которой функции управления прерываниями распределены между двумя функциональными блоками: локальным и ввода-вывода. Эти блоки обмениваются информацией через шину, называемую шиной коммуникаций контроллера прерываний. Блоки APIC совместно отвечают за доставку прерывания от источника прерываний до получателей по всей МП-системе.
Системная память. В системах, совместимых с МП-спецификацией, используется архитектура памяти стандарта AT: вся память используется как системная за исключением адресов, зарезервированных под устройства ввода-вывода и BIOS.
МП-системы нуждаются в высокой пропускной способности по сравнению с однопроцессорными. Требования возрастают пропорционально числу процессоров на шине памяти.
Шина
расширения ввода-вывода. Спецификация
обеспечивает построение МП-систем на
основе платформ PC/AT, отвечающих промышленным
стандартам. В проектах могут быть использованы
стандартные шины ISA, EISA, MCA, VL и PCI. BIOS выполняет
функции слоя, изолирующего особенности
аппаратных средств от ОС и программных
приложений. В многопроцессорных системах
BIOS выполняет следующие функции: проверяет
системные компоненты; строит таблицы
конфигурации, используемые ОС; инициализирует
процессор и всю остальную систему; дополнительно:
передает информацию о конфигурации в
ОС, которая идентифицирует все процессоры
и другие компоненты МП-систем; переводит
все процессоры и другие компоненты многопроцессорной
системы в заданное состояние. Одна из
главных целей этой спецификации состоит
в том, чтобы обеспечить возможность построения
микроядерных ОС для многопроцессорных
систем.
Для того чтобы ОС могла работать на многопроцессорных платформах, аппаратные средства должны обладать определенным набором свойств.
Конфигурация системной памяти. Спецификация МП-памяти основывается на стандартной карте памяти РС/АТ размером до 4 ГБайт.
Кэшируемость и доступность физической памяти для процессоров. Кэшируется вся память за исключением области, отведенной для описания регистров локального блока APIC. Все процессоры имеют доступ к главной памяти и участкам памяти, отведенным под ROM BIOS.
Управление памятью (блокировка). Для защиты целостности некоторых критических операций с памятью Intel-совместимые процессоры используют специальный сигнал. Разработчики системных программных средств должны использовать этот сигнал для управления доступом процессоров к памяти.
Для гарантии AT-совместимости блокировка некорректных операций с памятью в AT-совместимых шинах в согласованной системе должна реализовываться строго в соответствии со спецификациями на шины.
Упорядочение записей в памяти. Применяется при управлении устройствами ввода-вывода, чтобы операции с памятью и вводом-выводом выполнялись строго в запрограммированном порядке. Строгое упорядочивание операций ввода-вывода поддерживается процессорами.
Управление прерываниями. В МП-совместимой системе прерывания управляются контроллерами APIC используя по одному локальному блоку на процессор. Число блоков ввода-вывода должно быть не менее одного.
Чтобы обеспечить расширение функций и внесение изменений в будущем, архитектура APIC определяет только программный интерфейс блоков APIC. Режимы прерывания. В спецификации определены три режима прерывания:
1. Режим
PIC эффективно обходит все
2. Режим
виртуальной линии - использует APIC
как виртуальную линию, в
3. Режим
симметричного ввода-вывода - позволяет
работать с многими
Отображение памяти APIC. В согласованной МП-системе все контроллеры APIC должны быть реализованы как описанные в памяти устройства ввода-вывода. Базовые адреса APIC находятся в верхней части адресного пространства памяти. Все локальные блоки отображаются в одних и тех же адресах, которые не подлежат коллективному использованию, а используются каждым процессором индивидуально. Контроллеры ввода-вывода отображаются так, чтобы обеспечить их совместное использование всеми процессорами(полную симметричность доступа).
Таймеры интервалов. Локальные блоки содержат 32-битный программируемый таймер с двумя независимыми входами. Таймеры блока ввода-вывода имеют один вход.
Поддержка перезагрузки. Для приведения всех систем компьютера в начальное состояние требуется возможность перезагрузки системы. В системе может выполняться "жесткая" перезагрузка, которая устанавливает все компоненты системы в начальное состояние (при включении питания)
"Мягкая"
загрузка только частично
Таблицы конфигурации МП-систем ОС должна иметь доступ к информации о конфигурации МП-системы. Предусмотрено два метода передачи этой информации в ОС: минимальный, позволяющий задать конфигурацию посредством выбора одного из нескольких подразумеваемых наборов значений параметров аппаратуры; и максимальный, обеспечиващий высокую гибкость при проектировании аппаратных средств за счет произвольных установок.
Функции BIOS в МП-системе. В зависимости от многопроцессорных компонентов в МП-системе BIOS может иметь следующие функции:
1. Перевод АР в "спящий" режим.
2. Инициализация контроллеров APIC и других МП-компонент.
3. Создание таблицы
конфигурации МП-системы.
2. Операционные системы
для работы с многопроцессорными
системами
Операцио́нная систе́ма, ОС (англ. operating system) — базовый комплекс компьютерных программ, обеспечивающий интерфейс с пользователем, управление аппаратными средствами компьютера, работу с файлами, ввод и вывод данных, а также выполнение прикладных программ и утилит. Важное свойство ОС является отсутствие или наличие в ней средств поддержки мно-гопроцессорной обработки - мультипроцессирование. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами. В наши дни становится общепринятым введение в ОС функций поддержки многопроцессор-ной обработки данных. Такие функции имеются в операционных системах Solaris 2.x фирмы Sun, Open Server 3.x компании Santa Crus Operations, OS/2 фирмы IBM, Windows NT и NetWare 4.1, Windows 7. Многопроцессорные ОС могут клас-сифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС.
Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам.
Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.
Это характеристики, связанные с управлением только одним типом ресурсов - процессором. Важное влияние на облик операционной системы в целом, на воз-можности ее использования в той или иной области оказывают особенности и других подсистем управления локальными ресурсами - подсистем управления памятью, файлами, устройствами ввода-вывода. Специфика ОС проявляется и в том, каким образом она реализует сетевые функции: распознавание и перенапра-вление в сеть запросов к удаленным ресурсам, передача сообщений по сети, выполнение удаленных запросов. При реализации сетевых функций возникают задачи, связанные с распределенным характером хранения и обработки данных в сети: ведение справочной информации о всех доступных в сети ресурсах и серве-рах, адресация взаимодействующих процессов, обеспечение прозрачности досту-па, тиражирование данных, согласование копий, поддержка безопасности данных.
2.1 Первые операционные системы для работы в многопроцессорной конфигурации
Первой операционной системой для многопроцессорных систем была
операционная система COS (Cray Operating System 1976 год) предназначеная для режима пакетной обработки и дистанционной пакетной обработки заданий, полученных с удаленных терминалов. Операционная система рассчитывалась на мультипрограммную обработку одновременно до 63 активных задач. Для обеспечения работы в режиме дистанционного доступа в качестве машины-сателлита вычислительной системы Cray-1 используется минимашина "Eclipse". С этой машиной связаны внешние каналы центрального вычислителя с помощью специальных сопрягающих устройств. На минимашину возлагаются функции управления приемом-передачей информации, управления линиями связи, т. е. функции процессора передачи данных.
Позднее была разработа Unicos — название нескольких вариантов операционной системы Unix, созданных компанией Cray для своих суперкомпьютеров. Unicos является следующей операционной системой компании после Cray Operating System (COS). Она обеспечивала работу сетевых кластеров и совместимость на уровне исходного кода с некоторыми другими разновидностями Unix. Unicos впервые была представлена в 1985 году, в качестве операционной системы суперкомпьютера Cray-2, а позднее была портирована и на другие модели Cray
Наиболее развитые ОС, такие как OS/360 (IBM), SCOPE (CDC) и завершённый уже в 1970-х годах MULTICS (МТИ и Bell Labs), предусматривали возможность исполнения на многопроцессорных компьютерах.
Корпорация Be Inc. была создана в 1990 году бывшим исполнительным директором Apple Жаном-Луи Гассе с целью создать компьютерную систему нового поколения (заметим, что Гассе пошёл по пути предыдущего директора Apple Стива Джобса и его платформы NeXT). На подъёме энтузиазма Гассе и его соратники объединились, чтобы сделать простой в использовании, надёжный компьютер, свободный от пережитков прошлого. Планировалось создать именно компьютер, операционная система была только побочной целью. Например, файловая система не должна была содержать каталогов вообще, все файлы лежали на диске без распределения по директориям, а принадлежность к той или иной программе определялась на основе атрибутов — информации о файле, не записанной в самом файле.
Первые версии BeOS работали только на специально созданных компьютерах BeBox, которые тоже производились компанией Be, Inc.. Отличительными особенностями этих компьютеров были многопроцессорность (в одной из версий компьютера стояло 7 процессоров, в другой — 2), в двухпроцессорной версии — индикаторы загрузки процессоров на передней панели системного блока (известные также под названием Blinky Lights), тёмно-синий цвет системного блока и 52-битный порт на задней панели, известный под названием «Geek Port», с простым и удобным управлением для программиста — чтобы поощрять создание внешних устройств под BeOS. BeBox назывались «Silicon Graphics для бедняка» из-за их мощности, позволяющей творить чудеса с графикой, и относительно невысокой стоимости. Первые BeBox прототипы построены на AT&T Hobbit процессорах, но их производство было остановлено. Тогда Ве решила использовать PowerPC процессоры. С 1995 до 1997 всего было продано около двух тысяч компьютеров BeBox, большинство из которых работают и по сей день. Один из них можно увидеть в компьютерном музее в Бостоне. 30 января 1997 Be, Inc. объявила, что уходит из hardware бизнеса и BeBox производство было остановлено.
Информация о работе Многопроцессорные системы (Операционные системы UNIX)