Автор работы: Пользователь скрыл имя, 15 Июля 2013 в 21:17, курсовая работа
Деятельность мозга, направленную на решение интеллектуальныхзадач, будем называть мышлением, или интеллектуальной деятельностью.Интеллект и мышление органически связаны с решением таких задач, какдоказательство теорем, логический анализ, распознавание ситуаций,планирование поведения, игры и управление в условиях неопределенности.Характерными чертами интеллекта, проявляющимися в процессе решениязадач, являются способность к обучению, обобщению, накоплению опыта(знаний и навыков) и адаптации к изменяющимся условиям в процессерешения задач. Благодаря этим качествам интеллекта мозг может решатьразнообразные задачи, а также легко перестраиваться с решения однойзадачи на другую. Таким образом, мозг, наделенный интеллектом, являетсяуниверсальным средством решения широкого круга задач (в том численеформализованных) для которых нет стандартных, заранее известныхметодов решения.
Искусственный интеллект 2
Введение 2
История 4
Структура понятия 8
Основные направления 13
Условия достижения интеллектуальности 14
Научные школы 15
Конвенционный ИИ 15
Вычислительный ИИ 15
Подходы и направления 17
Подходы к пониманию проблемы 17
Тест Тьюринга и интуитивный подход 17
Символьный подход 19
Логический подход 20
Агентно-ориентированный подход 21
Структурный подход 21
Эволюционный подход 22
Имитационный подход 23
Гибридный подход 25
Вспомогательные системы нижнего уровня и их место в системах искусственного интеллекта 25
Модели и методы исследований 29
Методы самоорганизации 29
Нейросетевое моделирование 31
Символьное моделирование 32
Работа с естественными языками 32
Биологическое моделирование 36
Машинное обучение 36
Машинное творчество 37
Байесовские сети доверия 38
Проблема искусственного интеллекта 39
Заключение 48
Представим некоторые проблемы, решаемые применением нейронных сетей:
Структурная схема нейрона
Интеллектуальный агент — программа, самостоятельно выполняющая задание, указанное пользователем компьютера, в течение длительных промежутков времени. Интеллектуальные агенты используются для содействия оператору или сбора информации. Одним из примеров заданий, выполняемых агентами, может служить задача постоянного поиска и сбора необходимой информации в Интернете. Компьютерные вирусы, боты, поисковые роботы — всё это также можно отнести к интеллектуальным агентам. Хотя такие агенты имеют строгий алгоритм, «интеллектуальность» в этом контексте понимается как способность приспосабливаться и обучаться.
Экспертная система (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 197 0-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания.
Генетический алгоритм (англ. genetic algorithm) — это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, напоминающих биологическую эволюцию. Является разновидностью эволюционных вычислений. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.
Теорией явно не определено, что именно считать необходимыми и достаточными условиями достижения интеллектуальности. Хотя на этот счёт существует ряд гипотез, например, гипотеза Ньюэлла-Саймона. Обычно к реализации интеллектуальных систем подходят именно с точки зрения моделирования человеческой интеллектуальности. Таким образом, в рамках искусственного интеллекта различают два основных направления:
Таким образом, сверхзадачей искусственного интеллекта является построение компьютерной интеллектуальной системы, которая обладала бы уровнем эффективности решений неформализованных задач, сравнимым с человеческим или превосходящим его.
Наиболее часто используемые при построении систем искусственного интеллекта парадигмы программирования - функциональное программирование и логическое программирование. От традиционных структурного и объектно-ориентированного подходов к разработке программной логики они отличаются нелинейным выводом решений и низкоуровневыми средствами поддержки анализа и синтеза структур данных.
Несмотря на обилие методов искусственного интеллекта, часть которых была рассмотрена выше, теорией явно не определено, что именно считать необходимыми и достаточными условиями достижения интеллектуальности. На этот счет существует ряд гипотез, среди которых можно выделить следующие:
Сверхзадачей искусственного интеллекта является построение компьютерной интеллектуальной системы, которая обладала бы уровнем эффективности решений неформализованных задач, сравнимым с человеческим или превосходящим его.
Можно выделить две научные школы с разными подходами к проблеме ИИ:
В конвенционном ИИ главным образом используются методы машинного самообучения, основанные на формализме и статистическом анализе.
Методы конвенционного ИИ:
Вычислительный ИИ подразумевае
Основные методы вычислительного ИИ:
Существуют различные подходы к построению систем искусственного интеллекта. Это разделение не является историческим, когда одно мнение постепенно сменяет другое, и различные подходы существуют и сейчас. Кроме того, поскольку по-настоящему полных систем искусственного интеллекта в настоящее время нет, то нельзя сказать, что какой-то подход является правильным, а какой-то ошибочным.
Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.
В философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла — Саймона. Поэтому, несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, можно выделить два основных подхода к разработке ИИ:
Эмпирический тест был предложен Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence), опубликованной в 1950 году в философском журнале «Mind». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.
Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы — ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга.
Однако последний подход вряд ли
выдерживает критику при более
детальном рассмотрении. К примеру,
несложно создать механизм, который
будет оценивать некоторые
Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами.
Успешность и эффективность
решения новых задач зависит
от умения выделять только существенную
информацию, что требует гибкости
в методах абстрагирования. Тогда
как обычная программа
Основная особенность
Недостатком символьного подхода является то, что такие открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.
Почему он возник? Ведь человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных.
Основой для данного логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов, в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система искусственного интеллекта, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем.