Архитектура IPsec

Автор работы: Пользователь скрыл имя, 21 Марта 2016 в 18:38, реферат

Описание работы

В наше время главной ценностью на планете считается информация, следовательно её, как и всякую другую ценность, человек старается сохранить от посторонних рук и глаз. А так как сейчас уже 21 век, и понятие информации неразрывно связано с компьютерными технологиями, системами и сетями связи, то становится очевидной важность вопроса защиты информации в них. Изобретение компьютера и дальнейшее бурное развитие информационных технологий во второй половине 20 века сделали проблему защиты информации настолько актуальной и острой, насколько актуальна сегодня информатизация для всего общества. Особенно актуально стоит этот вопрос в области секретной информации государства и частной коммерческой информации.

Файлы: 1 файл

панкратов.docx

— 57.73 Кб (Скачать файл)

 

Тип следующего заголовка (8 bits)

Тип заголовка протокола, идущего после заголовка AH. По этому полю приёмный IP-sec модуль узнает о защищаемом протоколе верхнего уровня. Значения этого поля для разных протоколов можно посмотреть в RFC 1700.

Длина содержимого (8 bits)

Это поле определяет общий размер АН-заголовка в 32-битовых словах, минус 2. Несмотря на это, при использовании IPv6 длина заголовка должна быть кратна 8 байтам.

Зарезервировано (16 bits)

Зарезервировано. Заполняется нулями.

Индекс параметров системы безопасности (32 bits)

Индекс параметров безопасности. Значение этого поля вместе с IP-адресом получателя и протоколом безопасности (АН-протокол), однозначно определяет защищённое виртуальное соединение (SA) для данного пакета. Диапазон значений SPI 1…255 зарезервирован IANA.

Порядковый номер(32 bits)

Последовательный номер. Служит для защиты от повторной передачи. Поле содержит монотонно возрастающее значение параметра. Несмотря на то, что получатель может отказаться от услуги по защите от повторной передачи пакетов, оно является обязательным и всегда присутствует в AH-заголовке. Передающий IPsec-модуль всегда использует это поле, но получатель может его и не обрабатывать.

Данные аутентификации

Цифровая подпись. Служит для аутентификации и проверки целостности пакета. Должна быть дополнена до размера, кратного 8-байтам для IPv6, и 4-байтам для IPv4.

Протокол AH используется для аутентификации, то есть для подтверждения того, что мы связываемся именно с тем, с кем предполагаем, и что данные, которые мы получаем, не искажены при передаче[9].

Обработка выходных IP-пакетов

Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает AH-обработку, то он начинает обработку. В зависимости от режима (транспортный или режим туннелирования) он по-разному вставляет AH-заголовок в IP-пакет. В транспортном режиме AH-заголовок располагается после заголовка протокола IP и перед заголовками протоколов верхнего уровня (Обычно, TCP или UDP). В режиме туннелирования весь исходный IP-пакет обрамляется сначала заголовком AH, затем заголовком IP-протокола.

 Такой заголовок называется  внешним, а заголовок исходного IP-пакета- внутренним. После этого передающий IPsec-модуль должен сгенерировать последовательный номер и записать его в поле Sequence Number. При установлении SA последовательный номер устанавливается в 0, и перед отправкой каждого IPsec-пакета увеличивается на единицу. Кроме того, происходит проверка- не зациклился ли счетчик. Если он достиг своего максимального значения, то он снова устанавливается в 0. Если используется услуга по предотвращению повторной передачи, то при достижении счетчика своего максимального значения, передающий IPsec-модуль переустанавливает SA. Таким образом обеспечивается защита от повторной посылки пакета- приёмный IPsec-модуль будет проверять поле Sequence Number, и игнорировать повторно приходящие пакеты. Далее происходит вычисление контрольной суммы ICV. Надо заметить, что здесь контрольная сумма вычисляется с применением секретного ключа, без которого злоумышленник сможет заново вычислить хэш, но не зная ключа, не сможет сформировать правильную контрольную сумму. Конкретные алгоритмы, использующиеся для вычисления ICV, можно узнать из RFC 4305. В настоящее время могут применяться, например, алгоритмы HMAC-SHA1-96 или AES-XCBC-MAC-96. Протокол АН вычисляет контрольную сумму (ICV) по следующим полям IPsec-пакета: [10]

  • поля IP-заголовка, которые не были подвержены изменениям в процессе транслирования, или определены как наиболее важные

  • АН-заголовок (Поля: «Next Header», "Payload Len, «Reserved», «SPI», «Sequence Number», «Integrity Check Value». Поле «Integrity Check Value» устанавливается в 0 при вычислении ICV

  • данные протокола верхнего уровня

Если поле может изменяться в процессе транспортировки, то его значение устанавливается в 0 перед вычислением ICV. Исключения составляют поля, которые могут изменяться, но значение которых можно предугадать при приёме. При вычислении ICV они не заполняются нулями. Примером изменяемого поля может служить поле контрольной суммы, примером изменяемого, но предопределенного может являться IP-адрес получателя. Более подробное описание того, какие поля как учитываются при вычислении ICV, можно найти в стандарте RFC 2402.

 

Обработка входных IP-пакетов

После получения пакета, содержащего сообщение АН-протокола, приёмный IPsec-модуль ищет соответствующее защищённое виртуальное соединение (SA) SAD (Security Associations Database), используя IP-адрес получателя, протокол безопасности (АН) и индекс SPI. Если соответствующее SA не найдено, пакет уничтожается. Найденное защищённое виртуальное соединение (SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, то есть на необходимость проверки поля Sequence Number. Если услуга используется, то поле проверяется. При этом используется метод скользящего окна для ограничения буферной памяти, требуемый для работы протоколу. Приёмный IPsec-модуль формирует окно с шириной W (обычно W выбирается равным 32 или 64 пакетам). Левый край окна соответствует минимальному последовательному номеру (Sequence Number) N правильно принятого пакета. Пакет с полем Sequence Number, в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем приёмный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле «Integrity Check Value». Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным и принимается для дальнейшей IP-обработки. Если проверка дала отрицательный результат, то принятый пакет уничтожается. [10]

 

1.5Обработка выходных IPsec-пакетов

Если передающий IPsec-модуль определяет, что пакет связан с SA, которое предполагает ESP-обработку, то он начинает обработку. В зависимости от режима(транспортный или режим туннелирования) исходный IP-пакет обрабатывается по-разному. В транспортном режиме передающий IPsec-модуль осуществляет процедуру обрамления протокола верхнего уровня (например, TCP или UDP), используя для этого ESP-заголовок (поля Security Parameters Index и Sequence Number заголовка) и ESP-концевик (остальные поля заголовка, следующие за полем данных — Payload data), не затрагивая при этом заголовок исходного IP-пакета. В режиме туннелирования IP-пакет обрамляется ESP-заголовком и ESP-концевиком (инкапсуляция), после чего обрамляется внешним IP-заголовком (который может не совпадать с исходным — например, если IPsec модуль установлен на шлюзе).[8] Далее производится шифрование- в транспортном режиме шифруется только сообщение протокола выше лежащего уровня (то есть все, что находилось после IP-заголовка в исходном пакете), в режиме туннелирования- весь исходный IP-пакет. Передающий IPsec-модуль из записи о SA определяет алгоритм шифрования и секретный ключ. Стандарты IPsec разрешают использование алгоритмов шифрования Triple DES, AESи Blowfish, если их поддерживают обе стороны. Иначе используется DES, прописанный в RFC 2405. Так как размер открытого текста должен быть кратен определенному числу байт, например, размеру блока для блочных алгоритмов, перед шифрованием производится ещё и необходимое дополнение шифруемого сообщения. Защифрованное сообщение помещается в поле Payload Data. В поле Pad Length помещается длина дополнения. Затем, как и в AH, вычисляется Sequence Number. После чего считается контрольная сумма(ICV). Контрольная сумма, в отличие от протокола AH, где при её вычислении учитываются также и некоторые поля IP-заголовка, в ESP вычисляется только по полям ESP-пакета за вычетом поля ICV. Перед вычислением контрольной суммы оно заполняется нулями. Алгоритм вычисления ICV, как и в протоколе AH, передающий IPsec-модуль узнает из записи об SA, с которым связан обрабатываемый пакет.

1.6Обработка входных IPsec-пакето

После получения пакета, содержащего сообщение ESP-протокола, приёмный IPsec-модуль ищет соответствующее защищённое виртуальное соединение (SA) в SAD, используя IP-адрес получателя, протокол безопасности (ESP) и индекс SPI. [8] Если соответствующее SA не найдено, пакет уничтожается. Найденное защищённое виртуальное соединение (SA) указывает на то, используется ли услуга по предотвращению повторной передачи пакетов, то есть на необходимость проверки поля Sequence Number. Если услуга используется, то поле проверяется. Для этого, так же как и в AH, используется метод скользящего окна. Приёмный IPsec-модуль формирует окно с шириной W. Левый край окна соответствует минимальному последовательному номеру (Sequence Number) N правильно принятого пакета. Пакет с полем Sequence Number, в котором содержится значение, начиная от N+1 и заканчивая N+W, принимается корректно. Если полученный пакет оказывается по левую границу окна- он уничтожается. Затем, если используется услуга аутентификации, приёмный IPsec-модуль вычисляет ICV по соответствующим полям принятого пакета, используя алгоритм аутентификации, который он узнает из записи об SA, и сравнивает полученный результат со значением ICV, расположенным в поле «Integrity Check Value». Если вычисленное значение ICV совпало с принятым, то пришедший пакет считается действительным. Если проверка дала отрицательный результат, то приёмный пакет уничтожается. Далее производится расшифрование пакета. Приёмный IPsec-модуль узнает из записи об SA, какой алгоритм шифрования используется и секретный ключ. Надо заметить, что проверка контрольной суммы и процедура расшифрования могут проводиться не только последовательно, но и параллельно. В последнем случае процедура проверки контрольной суммы должна закончиться раньше процедуры расшифрования, и если проверка ICV провалилась, процедура расшифрования также должна прекратиться. Это позволяет быстрее выявлять испорченные пакеты, что, в свою очередь, повышает уровень защиты от атак типа «отказ в обслуживании»(DOS-атаки). Далее расшифрованное сообщение в соответствии с полем Next Header передается для дальнейшей обработки.

2. IKE


Основная статья: IKE

IKE (произносится айк, аббр. от Internet Key Exchange) — протокол, связывающий все компоненты IPsec в работающее целое. В частности, IKE обеспечивает первоначальную аутентификацию сторон, а также их обмен общими секретными ключами.

Существует возможность вручную установить ключ для сессии (не путать с pre-shared key [PSK] для аутентификации). В этом случае IKE не используется. Однако этот вариант не рекомендуется и используется редко. Традиционно, IKE работает через порт 500 UDP.

Существует IKE и более новая версия протокола: IKEv2. В спецификациях и функционировании этих протоколов есть некоторые различия. IKEv2 устанавливает параметры соединения за одну фазу, состоящую из нескольких шагов. Процесс работы IKE можно разбить на две фазы.

2.1Первая фаза

IKE создает безопасный  канал между двумя узлами, называемый IKE security association (IKE SA). Также, в этой фазе два узла согласуют сессионный ключ по алгоритмуДиффи-Хеллмана. Первая фаза IKE может проходить в одном из двух режимов:[12]

  • Основной режим

Состоит из трёх двусторонних обменов между отправителем и получателем:

    1. Во время первого обмена согласуются алгоритмы и хэш-функции, которые будут использоваться для защиты IKE соединения, посредством сопоставления IKE SA каждого узла.

    1. Используя алгоритм Диффи-Хеллмана, стороны обмениваются общим секретным ключом. Также узлы проверяют идентификацию друг друга путем передачи и подтверждения последовательности псевдослучайных чисел.

    1. По зашифрованному IP-адресу проверяется идентичность противоположной стороны. В результате выполнения основного режима создается безопасный канал для последующего ISAKMP — обмена (этот протокол определяет порядок действий для аутентификации соединения узлов, создания и управления SA, генерации ключей, а также уменьшения угроз, таких как DoS-атака или атака повторного воспроизведения).

  • Агрессивный режим

Этот режим обходится меньшим числом обменов и, соответственно, числом пакетов. В первом сообщении помещается практически вся нужная для установления IKE SA информация: открытый ключ Диффи-Хеллмана, для синхронизации пакетов, подтверждаемое другим участником, идентификатор пакета. Получатель посылает в ответ все, что надо для завершения обмена. Первому узлу требуется только подтвердить соединение.

С точки зрения безопасности агрессивный режим слабее, так как участники начинают обмениваться информацией до установления безопасного канала, поэтому возможен несанкционированный перехват данных. Однако, этот режим быстрее, чем основной. По стандарту IKE любая реализация обязана поддерживать основной режим, а агрессивный режим поддерживать крайне желательно.

2.2 Вторая фаза

В фазе два IKE существует только один, быстрый, режим. Быстрый режим выполняется только после создания безопасного канала в ходе первой фазы. Он согласует общую политику IPsec, получает общие секретные ключи для алгоритмов протоколов IPsec (AH или ESP), устанавливает IPsec SA. Использование последовательных номеров обеспечивает защиту от атак повторной передачи. Также быстрый режим используется для пересмотра текущей IPsec SA и выбора новой, когда время жизни SA истекает. Стандартно быстрый режим проводит обновление общих секретных ключей, используя алгоритм Диффи-Хеллмана из первой фазы.

3. Как работает IPsec


В работе протоколов IPsec можно выделить пять этапов:[13]

  1. Первый этап начинается с создания на каждом узле, поддерживающим стандарт IPsec, политики безопасности. На этом этапе определяется, какой трафик подлежит шифрованию, какие функции и алгоритмы могут быть использованы.

  1. Второй этап является по сути первой фазой IKE. Её цель — организовать безопасный канал между сторонами для второй фазы IKE. На втором этапе выполняются:

    • Аутентификация и защита идентификационной информации узлов

    • Проверка соответствий политик IKE SA узлов для безопасного обмена ключами

    • Обмен Диффи-Хеллмана, в результате которого у каждого узла будет общий секретный ключ

    • Создание безопасного канала для второй фазы IKE

  1. Третий этап является второй фазой IKE. Его задачей является создание IPsec-туннеля. На третьем этапе выполняются следующие функции:

    • Согласуются параметры IPsec SA по защищаемому IKE SA каналу, созданному в первой фазе IKE

    • Устанавливается IPsec SA

    • Периодически осуществляется пересмотр IPsec SA, чтобы убедиться в её безопасности

    • (Опционально) выполняется дополнительный обмен Диффи-Хеллмана

Информация о работе Архитектура IPsec