Администрирование сетей

Автор работы: Пользователь скрыл имя, 04 Ноября 2010 в 13:39, Не определен

Описание работы

Понятие сети. История возникновения

Файлы: 1 файл

Администрирование сетей.doc

— 855.00 Кб (Скачать файл)

                       1.контроль достоверности переданных данных

                      (исключение           ошибок)

                   2.ресинхронизация(на частоте 100 МГц сложно подобрать

                      одинаковые ( совпадающие по параметрам ) генераторы

                      при передаче данных.Нужен синхронизм)

              3.общение на физическом уровне

              4.адаптация сигнала к линиям связи       

    Все виды стандартов Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.

    В зависимости от типа физической среды стандарт IEEE 802.3 определяет различные спецификации: 10Base-5, 10Base-2, 10Base-T, FOIRL, lOBase-FL, lOBase-FB. Для каждой спецификации определяются тип кабеля, максимальные длины непрерывных отрезков кабеля, а также правила использования повторителей для увеличения диаметра сети: правило «5-4-3» для коаксиальных вариантов сетей, и правило «4-х хабов» для витой пары и оптоволокна.

                         

                               2.4.CSMA/CD как основа доступа Ethernet.

    В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).

    Этот метод применяется исключительно в сетях с логической общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать на общую шину. Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.

    Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense, CS). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.

    Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции- источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ.

    После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также меж кадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна. Из-за задержек распространения сигнала по кабелю не все узлы строго одновременно фиксируют факт окончания передачи кадра узлом.

    Возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде , тогда при этом происходит коллизия (collision).Но так как содержимое обоих кадров сталкивается на общем кабеле , то происходит искажение информации , а методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.

    Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии — это следствие распределенного характера сети.

    Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности скорейшего обнаружения коллизии всеми станциями сети станция, которая обнаружила коллизию, прерывает передачу своего кадра (в произвольном месте, возможно, и не на границе байта) и усиливает ситуацию коллизии посылкой в сеть специальной последовательности из 32 бит, называемой jam-последовательностью.

    После этого обнаружившая коллизию передающая станция обязана прекратить передачу и сделать паузу в течение короткого случайного интервала времени. Затем она может снова предпринять попытку захвата среды и передачи кадра.

    Для уменьшения интенсивности возникновения коллизий нужно либо уменьшить трафик, сократив, например, количество узлов в сегменте или заменив приложения, либо повысить скорость протокола, например перейти на Fast Ethernet.

                      

                              2.5. Ограничения топологии сети Ethernet.

    Передающая станция должна успевать обнаружить коллизию, которую вызвал переданный ее кадр, еще до того, как она закончит передачу этого кадра. Время передачи одного кадра должно быть больше времени распространения сигнала по сети туда и обратно(чтобы успеть получить

    jam-последовательность и не стереть кадр , а снова его передать в случае коллизии).

          Минимальная длина кадра   -   576 бит для стандарта 10МГц ,100МГц.

                                                                4096 бит для стандарта  1000МГц.

          Максимальный диаметр сети  - 2500 м для стандарта 10МГц.

    С увеличением скорости передачи кадров, что имеет место в новых стандартах, базирующихся на том же методе доступа CSMA/CD, например Fast Ethernet, максимальное расстояние между станциями сети уменьшается пропорционально увеличению скорости передачи. В стандарте Fast Ethernet оно составляет около 210 м, а в стандарте Gigabit Ethernet оно было бы ограничено 25 метрами, если бы разработчики стандарта не предприняли некоторых мер по увеличению минимального размера пакета.

                            

                                   2.6. 100 Мбитный стандарт  Ethernet.

    Классический 10-мегабитный Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако в начале 90-х годов начала ощущаться его недостаточная пропускная способность. Для более мощных клиентских станций с шиной PCI (133 Мбайт/с) эта доля упала до 1/133, что было явно недостаточно. Поэтому многие сегменты 10-мегабитного Ethernet стали перегруженными, реакция серверов в них значительно упала, а частота возникновения коллизий существенно возросла, еще более снижая полезную пропускную способность.

    Назрела необходимость в разработке «нового» Ethernet, то есть технологии, которая была бы такой же эффективной по соотношению цена/качество при производительности 100 Мбит/с. В результате поисков и исследований специалисты разделились на два лагеря, что в конце концов привело к появлению двух новых технологий — Fast Ethernet и 100VG-AnyLAN. Они отличаются степенью преемственности с классическим Ethernet.

    Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же.

    Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем:

      •    волоконно-оптический многомодовый кабель, используются два волокна;

      •    витая пара категории 5, используются две пары;

      •    витая пара категории 3, используются четыре пары.

    Официальный стандарт 802.3и установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:

          •    100Base-TX для двухпарного кабеля на неэкранированной витой паре   UTP категории 5 или экранированной витой паре STP Туре 1;

          •    100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

          •     100Base-FX для многомодового оптоволоконного кабеля, используются два волокна.

    Форматы кадров технологии Fast Ethernetae отличаются от форматов кадров технологий 10-мегабитного Ethernet.

    Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.

        Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды.

                 

                                    2.7. 1000 Мбитный стандарт Ethernet.

    Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграторы и администраторы почувствовали определенные ограничения при построении корпоративных сетей. Во многих случаях серверы, подключенные по 100-мегабитному каналу, перегружали магистрали сетей, работающие также на скорости 100 Мбит/с — магистрали FDDI и Fast Ethernet. Ощущалась потребность в следующем уровне иерархии скоростей.

    Летом 1997 года было объявлено о создании группы 802.3z для разработки протокола, максимально подобного Ethernet, но с битовой скоростью 1000 Мбит/с.

    Основная идея разработчиков стандарта Gigabit Ethernet состоит в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с.

    Сохраняются все форматы кадров Ethernet.

                    По-прежнему  существуют полудуплексная версия протокола, поддерживающая метод доступа CSMA/CD, и полнодуплексная версия, работающая с коммутаторами.

    Поддерживаются все основные виды кабелей, используемых в Ethernet и Fast Ethernet: волоконно-оптический, витая пара категории 5, коаксиал.

                     Стояло несколько трудно разрешимых проблем:

      1. обеспечение приемлемого диаметра сети для

                                      полудуплексного режима работы;

      1. достижение битовой скорости 1000 Мбит/с на основных

                                      типах кабелей;

      1. поддержка кабеля на витой паре.

    Для расширения максимального диаметра сети Gigabit Ethernet в полудуплексном режиме до 200 м разработчики увеличили минимальный размер кадра  до 4096 байт (с одним повторителем).

    В стандарте 802.3z определены следующие типы физической среды:

                    - в одномодовый волоконно-оптический кабель;

                    - в многомодовый волоконно-оптический кабель 62,5/125;

                    - в многомодовый волоконно-оптический кабель 50/125;

                    - в двойной коаксиал с волновым сопротивлением 75 Ом.

               

                      2.8.Типы коммуникационного  оборудования Ethernet

                                      2.8.1. Сетевой адаптер.

    Сетевой адаптер (Network Interface Card, NIC) вместе со своим драйвером реализует второй, канальный уровень модели открытых систем в конечном узле сети — компьютере.

    Сетевой адаптер совместно с драйвером выполняют две операции: передачу и прием кадра.

                                   2.8.2.Повторитель.   Концентратор (hab).

    Практически во всех современных технологиях локальных сетей определено устройство, которое имеет несколько равноправных названий — концентратор (concentrator), хаб (hub), повторитель (repeator). В зависимости от области применения этого устройства в значительной степени изменяется состав его функций и конструктивное исполнение. Неизменной остается только основная функция — это повторение кадра либо на всех портах (как определено в стандарте Ethernet), либо только на некоторых портах, в соответствии с алгоритмом, определенным соответствующим стандартом.

Информация о работе Администрирование сетей