Автор работы: Пользователь скрыл имя, 07 Января 2011 в 18:19, реферат
Свойства проекций при центральном проецировании:
1 Проекцией точки является точка.
2 Проекцией линии является линия.
3 Проекцией прямой в общем случае является прямая. (Если прямая совпадает с проецирующим лучом, то её проекцией является точка).
4 Если точка принадлежит линии, то проекция точки принадлежит проекции линии.
5 Точка пересечения линий проецируется в точку пересечения проекций этих линий.
6 В общем случае плоский многогранник проецируется в многогранник с тем же числом вершин.
Для
отображения точек оригинала
на чертеже применяют операцию проецирования.
Имеется плоскость
Точка А1 - точка пересечения проецирующей прямой с плоскостью П1- называется проекцией точки А на плоскости П1.
Чертежи, построенные по методу проецирования, называются проекционными.
В зависимости от положения проецирующих лучей проецирование может быть либо центральным (коническим), либо параллельным (цилиндрическим).
При проецировании сложного объекта
выполняется проецирование
Наиболее общий случай получения проекций пространственных фигур - это центральное проецирование.
В этом
случае проецирующие лучи
Для того чтобы получить центральные
проекции точек А и B, необходимо
провести проецирующие лучи из центра
проецирования S через точки А и B до пересечения
с плоскостью проекций П1. При пересечении
получаются точки А1 и B1 - центральные проекции
точек А и B.
Положение точки S и плоскости П1, которая не проходит через центр проекций, определяют аппарат центрального проецирования. Если он задан, то всегда можно определить положение центральной проекции любой точки пространства на плоскость проекции, при этом каждая точка пространства будет иметь только одну центральную проекцию. Однако, по одной центральной проекции невозможно определить положение точки в пространстве, так как она может находиться в любом месте прямой, соединяющей проекцию точки и центр проецирования.
Для того чтобы определить положение точки А в пространстве по её центральным проекциям, необходимо иметь две центральные проекции этой точки А1 и А2, полученные из двух различных центров S1 и S2. Если провести проецирующие лучи S1А1 и S2А2, то точка их пересечения однозначно определит положение точки А в пространстве.
Для построения центральной проекции A1B1 отрезка АВ достаточно построить центральные проекции А1 и B1 точек А и В, так как две точки однозначно определяют прямую.
Свойства проекций при центральном проецировании:
1 Проекцией точки является точка.
2 Проекцией линии является линия.
3 Проекцией прямой в общем случае является прямая. (Если прямая совпадает с проецирующим лучом, то её проекцией является точка).
4 Если точка принадлежит линии, то проекция точки принадлежит проекции линии.
5 Точка пересечения линий проецируется в точку пересечения проекций этих линий.
6 В общем случае плоский многогранник проецируется в многогранник с тем же числом вершин.
7 Проекцией взаимно параллельных прямых является пучок прямых.
8 Если плоская фигура параллельна плоскости проекций, то её проекция подобна этой фигуре.
Параллельное
проецирование можно
Если
центр проекций при
В зависимости
от направления проецирующих
лучей параллельное
Построим параллельную проекцию А1В1 отрезка АВ, на плоскость П1, при заданном направлении проецирования Р не П1. Для этого необходимо провести проецирующие прямые через точки А и В, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1 и В1 точек А и В. Соединив параллельные проекции А1 и В1 мы получим параллельную проекцию А1В1 отрезка АВ.
Аналогично можно построить параллельную проекцию А1В1С1D1 четырёхугольника ABCD на плоскость П1, при заданном направлении проецирования Р не П1.
Для этого необходимо провести проецирующие прямые через точки А, В, C, D, параллельные направлению проецирования Р. При пересечении проецирующих прямых с плоскостью П1 получатся параллельные проекции А1, В1, С1, D1 точек A, B, C, D. Соединив параллельные проекции А1, В1, С1, D1 мы получим параллельную проекцию А1В1С1D1 четырёхугольника ABCD.
Свойства проекций при параллельном проецировании:
1.Проекции параллельных прямых параллельны.
Из рисунка видно, что прямые АА1, ВВ1, СС1 и DD1 образуют две параллельные плоскости a и b. Эти две плоскости пересекаются с П1. Следовательно, линии пересечения их А1В1 и С1D1 будут параллельны.
2. Если точка делит длину отрезка в отношении m:n, то проекция этой точки делит длину проекции отрезка в том же отношении.
Пусть точка С принадлежит
отрезку АВ, причем |АС| : |СВ| = 2 : 1. Построим
параллельную проекцию А1В1
3. Плоская фигура, параллельная плоскости проекций, проецируется без искажения.
Возьмём треугольник АВС и спроецируем его на две параллельные плоскости проекций П1' и П1. Так как длины отрезков равны |А1 А1'| = |В1 В1'| = |С1 С1'| и отрезки параллельны, то четырёхугольники А1 А1' В1 В1', В1 В1' С1С1', С1 С1'А1А1' являются параллелограммами. Следовательно, противоположные стороны их равны по длине |А1 В1| = |А1' В1'|, |В1 С1| = |В1' С1'|, |А1 С1| = |А1' С1'|, а значит, треугольники равны.
Аналогично, тоже самое можно доказать и для любой другой плоской фигуры. Параллельное проецирование, в отличие от центрального, обладает меньшей наглядностью, но обеспечивает простоту построения и большую взаимосвязь с оригиналом.
Как уже
было сказано выше ортогональное
проецирование - это частный случай
параллельного проецирования. При
ортогональном проецировании
Аппарат такого проецирования состоит из одной плоскости проекций.
Чтобы получить ортогональную проекцию точки А, через неё надо провести проецирующий луч перпендикулярно к П1. Точка А1 называется ортогональной или прямоугольной проекцией точки А.
Чтобы получить ортогональную
проекцию А1В1 отрезка АВ, на
плоскость П1, необходимо через
точки А и В провести
Все свойства
параллельного проецирования
Свойства ортогонального проецирования:
1.Длина отрезка
равна длине его проекции, делённой
на косинус угла наклона
Возьмём прямую АВ и построим её ортогональную проекцию А1В1 на плоскость П1. Если провести прямую АС || А1В1, то из треугольника АВС следует, что |АС| : |АВ| = cos a или |АВ| = |А1В1| : cos a, т. к. |А1В1| = |АС|.
2. Кроме того, для ортогонального проецирования будет справедлива теорема о проецировании прямого угла:
Теорема:Если
хотя бы одна сторона прямого угла
параллельна плоскости
Доказательство: Дан прямой угол АВС, у которого по условию прямая ВС АВ и ВС || плоскости проекций П1. По построению прямая ВС к проецирующему лучу ВВ1. Следовательно, прямая ВС к плоскости b (АВхВВ1), т. к. она к двум пересекающимся прямым , лежащим в этой плоскости. По условию прямая В1С1 || ВС, поэтому тоже к плоскости b, т. е. и прямой А1В1 этой плоскости. Следовательно, угол между прямыми А1В1 и В1С1 равен 90°, что и требовалось доказать.
Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.
Рассмотренные
методы проецирования
Чтобы
получить обратимый чертеж, т.е.
чертеж дающий полное
1.Эпюр Монжа или ортогональные проекции.
Суть метода ортогональные (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, а затем совмещают их с плоскостью чертежа.
2.Аксонометрический чертеж.
Суть аксонометрического чертежа в том, что сначала оригинал жестко связывают с декартовой системой координат OXYZ, ортогонально проецируют его на одну из плоскостей проекций OXY, или OXZ. Затем параллельным проецированием находят параллельную проекцию полученной конструкции: осей координат OX, OY, OZ, вторичной проекции и оригинала.
3.Перспективный чертеж.
При построении перспективного чертежа сначала строят одну ортогональную проекцию, а затем на картинной плоскости находят центральную проекцию построенной ранее ортогональной проекции и самого оригинала.
4.Проекции с числовыми отметками и др.
Чтобы получить проекции с числовыми отметками ортогонально проецируют оригинал на плоскость нулевого уровня и указывают расстояние от точек оригинала до этой плоскости.