Автор работы: Пользователь скрыл имя, 10 Февраля 2011 в 01:38, реферат
По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса – аморфные и кристаллические тела.
1. На какие классы делятся материалы по структуре?
2. Какие характеристики описывают кристаллическое строение материала?
3. Что такое полиморфизм и анизотропия металлов?
4. Какие основные дефекты кристаллического строения присутствуют в материалах?
5. Каковы основные требования, предъявляемые к конструкционным материалам?
Тема
1. Структура и свойства материалов
План
1.
На какие классы делятся
2.
Какие характеристики
3.
Что такое полиморфизм и
4.
Какие основные дефекты кристаллического
строения присутствуют в материалах?
5. Каковы основные требования, предъявляемые к конструкционным материалам?
1. На какие классы делятся
По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса – аморфные и кристаллические тела.
Характерной особенностью аморфных тел является их изотропность, т. е. независимость всех физических свойств (механических, оптических и т. д.) от направления. Молекулы и атомы в изотропных твердых телах располагаются хаотично, образуя лишь небольшие локальные группы, содержащие несколько частиц (ближний порядок). По своей структуре аморфные тела очень близки к жидкостям. Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т. д. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур.
В
кристаллических телах частицы
располагаются в строгом
В каждой пространственной решетке можно выделить структурный элемент минимального размера, который называется элементарной ячейкой. Вся кристаллическая решетка может быть построена путем параллельного переноса (трансляции) элементарной ячейки по некоторым направлениям.
Теоретически доказано, что всего может существовать 230 различных пространственных кристаллических структур. Большинство из них (но не все) обнаружены в природе или созданы искусственно.
Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо).
Кристаллические тела могут быть монокристаллами и поликристаллами. Поликристаллические тела состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Большие монокристаллы редко встречаются в природе и технике. Чаще всего кристаллические твердые тела, в том числе и те, которые получаются искусственно, являются поликристаллами.
В отличие от монокристаллов, поликристаллические тела изотропны, т. е. их свойства одинаковы во всех направлениях. Поликристаллическое строение твердого тела можно обнаружить с помощью микроскопа, а иногда оно видно и невооруженным глазом (чугун).
Многие вещества могут существовать в нескольких кристаллических модификациях (фазах), отличающихся физическими свойствами. Это явление называется полиморфизмом. Переход из одной модификации в другую называется полиморфным переходом. Интересным и важным примером полиморфного перехода является превращение графита в алмаз. Этот переход при производстве искусственных алмазов осуществляется при давлениях 60–100 тысяч атмосфер и температурах 1500–2000 К.
Структуры
кристаллических решеток
В
простой кубической решетке частицы
располагаются в вершинах куба. В
гранецентрированной решетке
Кристаллические
структуры металлов имеют важную особенность.
Положительно заряженные ионы металла,
образующие кристаллическую решетку,
удерживаются вблизи положений равновесия
силами взаимодействия с «газом свободных
электронов». Электронный газ образуется
за счет одного или нескольких электронов,
отданных каждым атомом. Свободные электроны
способны блуждать по всему объему кристалла.
2.
Какие характеристики
Общее свойство металлов и сплавов — их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве. Для описания атомно-кристаллической структуры используют понятие кристаллической решетки, являющейся воображаемой пространственной сеткой с ионами (атомами) в узлах.
Атомно-кристаллическая
структура может быть представлена не
рядом периодически повторяющихся объемов,
а одной элементарной ячейкой. Так называется
ячейка, повторяющаяся во всех трех измерениях.
Трансляцией этого наименьшего объема
можно полностью воспроизвести структуру
кристалла (рис. 2.1).
Рис. 2.1. Кристаллическая решетка
В кристалле элементарные частицы (атомы, ионы) сближены до соприкосновения. Для упрощения пространственное изображение принято заменять схемами, где центры тяжести частиц представлены точками. В точках пересечения прямых линий располагаются атомы; они называются узлами решетки. Расстояния a, b и c между центрами атомов, находящихся в соседних узлах решетки, называют параметрами, или периодами решетки. Величина их в металлах порядка 0,1–0,7 нм, размеры элементарных ячеек — 0,2–0,3 нм.
Для
однозначного описания элементарной ячейки
кристаллической решетки
В 1848 г. французский ученый Бравэ показал, что изученные трансляционные структуры и элементы симметрии позволяют выделить 14 типов кристаллических решеток.
На рис. 2.2 показаны три типа элементарных ячеек кристаллических решеток, наиболее характерные для металлов: объемноцентрированная кубическая (ОЦК); гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГП), а также схемы упаковки в них атомов.
.
Рис. 2.2. Типы элементарных ячеек кристаллических решеток металлов и схемы упаковки в них атомов:
а) гранецентрированная кубическая (ГЦК);
б) объемноцентрированная кубическая (ОЦК);
в) гексагональная плотноупакованная (ГП) решетка
В кубической гранецентрированной решетке (ГЦК; А1) атомы расположены в вершинах куба и в центре каждой грани (рис. 2.2, б).
В кубической объемноцентрированной решетке (ОЦК; А2) атомы расположены в вершинах куба, а один атом — в центре его объема (рис. 2.2, а).
В гексагональной плотноупакованной решетке (ГП; А3) атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы (рис. 2.2, в).
Для характеристики кристаллических решеток вводят понятия координационного числа и коэффициента компактности. Координационным числом называется число атомов, находящихся на наиболее близком и равном расстоянии от данного атома. Для ОЦК решетки координационное число равно 8, для решеток ГЦК и ГП оно составляет 12. Из этого следует, что решетка ОЦК менее компактна, чем решетки ГЦК и ГП. В решетке ОЦК каждый атом имеет всего 8 ближайших соседей, а в решетках ГЦК и ГП их 12.
Если принять, что атомы в решетке представляют собой упругие соприкасающиеся шары, то нетрудно видеть, что в решетке, помимо атомов, имеется значительное свободное пространство. Плотность кристаллической решетки, т. е. объем, занятый атомами, характеризуется коэффициентом компактности.
Коэффициент компактности Q равен отношению суммарного объема атомов, входящих в решетку, к объему решетки:
где R — радиус атома (иона); n — базис, или число атомов, приходящихся на одну элементарную ячейку; V — объем элементарной ячейки.
Для простой кубической решетки n = (1/8) · 8 = 1; V = a3 = (2R)3, коэффициент компактности Q = 52 %.
Схема определения базиса ОЦК решетки приведена на рис. 2.3. На решетку ОЦК приходится два атома: один центральный и один как сумма от вершин куба, так как ячейке принадлежит 1/8 атома от каждого угла.
Для ОЦК решетки n = (1/8) · 8 + 1 = 2. Учитывая, что атомы соприкасаются по диагонали куба, длина которой равна 4 атомным радиусам, параметр решетки, а коэффициент компактности QОЦК = 68 %.
Проведя аналогичные вычисления, найдем QГЦК = 74 %, QГП = 74 %.
Таким
образом, решетки ГЦК и ГП более
компактны, чем ОЦК.
3.
Что такое полиморфизм и
Некоторые
металлы при разных температурах
могут иметь различную
Известны полиморфные превращения железа:
Fea « Feg (a-Fe « g-Fe), титана Tia « Tig (a-Ti « g-Ti) и других элементов.
Рис. 3.1. Схема определения базиса ОЦК решетки
Температура
превращения одной
При
полиморфном превращении
При переходе из одной полиморфной формы в другую меняются свойства, в частности плотность и соответственно объем вещества. Например, плотность Feg на 3 % больше плотности Fea, а удельный объем соответственно меньше. Эти изменения объема необходимо учитывать при термообработке.
Полиморфизм олова явился одной из причин гибели полярной экспедиции английского исследователя Р. Скотта. Оловом были запаяны канистры с керосином. При низкой температуре произошло полиморфное превращение пластичного белого олова с образованием хрупкого порошка серого олова. Горючее вылилось и испарилось, и на обратном пути экспедиция осталась без топлива. Превращение белого олова в серое называют «оловянной чумой».
Свойства
материалов зависят от природы атомов,
из которых они состоят, и силы
взаимодействия между ними. Аморфные
материалы характеризуются
Из-за неодинаковой плотности атомов в различных направлениях кристалла наблюдаются разные свойства. Различие свойств в кристалле в зависимости от направления испытания называется анизотропией.