Способы варки стали, преимущества и недостатки существующих методов варки

Автор работы: Пользователь скрыл имя, 08 Декабря 2010 в 20:47, реферат

Описание работы

Основы технологии получения стали. Сталь требуемого химического состава получают из передельного чугуна и соответствующих шихтовых материалов при различных способах ведения плавки, окисляя и удаляя примеси чугуна: Si, Р, S и др.
Исходными материалами для выплавки стали, кроме передельного чугуна, являются: стальной лом, ферросплавы, железная руда и флюсы.

Файлы: 1 файл

Доклад по ХаннановУ.docx

— 38.96 Кб (Скачать файл)
 
 
 
 
 
 
 
 
 

    ДОКЛАД 
 

    «Способы  варки стали, преимущества и недостатки существующих методов варки» 
 
 
 
 
 
 
 
 

                Выполнил: студент  5 курса  фТиП

                Габделахатов  А.З.

                Проверил: Ханнанов Э.З. 
                 
                 
                 

    СВЕДЕНИЯ  ПО ТЕХНОЛОГИИ ПРОИЗВОДСТВА СТАЛИ  

    Основы  технологии получения стали. Сталь  требуемого химического состава  получают из передельного чугуна и  соответствующих шихтовых материалов при различных способах ведения  плавки, окисляя и удаляя примеси  чугуна: Si, Р, S и др.

    Исходными материалами для выплавки стали, кроме передельного чугуна, являются: стальной лом, ферросплавы, железная руда и флюсы.

    ПОЛУЧАЮТ  СТАЛЬ В КОНВЕРТЕРАХ, МАРТЕНАХ, ЭЛЕКТРОПЕЧАХ.

    КОНВЕРТЕРНЫЙ  СПОСОБ получения стали заключается в том, что через расплавленный чугун, находящийся в конвертере, продувается воздух, обогащенный кислородом. Так как в процессе окисления стали получается металл, насыщенный закисью железа, то для улучшения его свойств в расплавленную сталь вводят раскислители Si, Мn, А1 и др.

    Конвертер представляет собой печь грушевидной формы, вращающуюся во кругло горизонтальной оси. При заполнении печи расплавленным чугуном конвертер находится в наклонном положении. Затем при помощи поворотного механизма его переводят в вертикальное положение и через отверстие в днище продувают воздух или кислород. Образующаяся вначале закись железа FeO, растворяясь в металле, вступает в реакцию с кремнием, марганцем, углеродом и фосфором, образуя Si02, МnО и фосфорные соединения, связываемые шлаком и СО, который, сгорая, удаляется с газом.

    В зависимости от состава исходного  сырья и футеровки различают  два вида конвертерного способа  получения стали: кислый (бессемеровский) и основный (томасовский). При бессемеровском способе конвертер футеруют кислым огнеупором (динасом), при томасовском - основным (обожженным доломитом). В качестве флюса вводят известь.

    МАРТЕНОВСКИЙ  СПОСОБ получения стали заключается в выплавке ее на поду пламенной печи из передельного чугуна и стального лома с добавкой руды и флюсов. Как и конвертерный, мартеновский способ выплавки стали может быть кислым и основным.

    Мартеновская  печь представляет собой агрегат, нагреваемый  сгорающим газообразным или жидким топливом, на поду которого находится  расплавленный металл. Для повышения теплового эффекта газ и воздух предварительно нагревают в регенераторах, для дутья применяют кислород.

    КИСЛОРОДНО-КОНВЕРТЕРНЫЙ СПОСОБ имеет преимущество перед мартеновским. Кислородно-конвертерный процесс с верхней продувкой кислорода обеспечивает высокое качество стали.

    Конвертерная  и мартеновская стали могут быть кипящими и спокойными. Кипящая сталь менее однородна, чем спокойная, подвергающаяся перед отливкой в изложницы раскислению А1 или Si. Поэтому из кипящей стали не изготовляют ответственные сварные конструкции, а также конструкции, работающие в условиях повышенных температур, и др. Кипящая сталь хорошо поддается обработке под давлением.

    Электровыплавка стали состоит из окисления примесей чугуна и раскисления стали от закиси железа. Фосфор и сера при этом почти целиком переходят в шлаки. Для полного раскисления закиси железа в конце процесса вводят ферросилиций, а также легирующие примеси для получения особых сортов сталей.

    СОВРЕМЕННЫЕ ЭЛЕКТРОПЕЧИ БЫВАЮТ ДУГОВЫЕ И ИНДУКЦИОННЫЕ. Сталь разливают обычно в металлические формы, называемые изложницами, двумя способами - сифонной разливкой, при которой металл поступает в изложницы снизу через центральный литник, и заливкой сверху.

             В последнее время применяют непрерывную разливку стали. При этом сталь попадает в охлаждаемую изложницу с временным дном (кристаллизатором) из куска металла. Жидкий металл при непрерывной заливке затвердевает в кристаллизаторе у стенок и дна, образуя слиток, состоящий из корочки металла и жидкой внутренней части, непрерывно движущийся вниз, в зону вторичного охлаждения. Затвердевший слиток разрезают на куски, поступающие в прокатные станы. При непрерывной разливке стали повышается выход металла, увеличивается производительность труда, не требуется изложниц, исключается необходимость в крупных обжимных станах, блюмингах и слябингах.  
 
 
 

   ПЛАВКА  СТАЛИ В ОСНОВНОЙ ДУГОВОЙ ЭЛЕКТРОПЕЧИ  

   Сырые материалы 

   Основным  материалом для электроплавки является стальной лом. Лом не должен быть сильно окисленным, так как наличие большого количества ржавчины вносит в сталь значительное количество водорода. В зависимости от химического состава лом необходимо рассортировать на соответствующие группы. Основное количество лома, предназначенное для плавки в электропечах, должно быть компактным и тяжеловесным. При малой насыпной массе лома вся порция для плавки не помещается в печь. Приходится прерывать процесс плавки и подгружать шихту. Это увеличивает продолжительность плавки, приводит к повышенному расходу электроэнергии, снижает производительность электропечей. В последнее время в электропечах используют металлизованные окатыши, полученные методом прямого восстановления. Достоинством этого вида сырья, содержащего 85— 93 % железа, является то, что оно не загрязнено медью и другими примесями. Окатыши целесообразно применять для выплавки высокопрочных конструкционных легированных сталей, электротехнических, шарикоподшипниковых сталей.

   Легированные  отходы образуются в электросталеплавильном цехе в виде недолитых слитков, литников; в обдирочном отделении в виде стружки, в прокатных цехах в  виде обрези и брака и т, д. ; кроме того много легированного лома поступает от машиностроительных заводов. Использование легированных металлоотходов позволяет экономить ценные легирующие, повышает экономическую эффективность электроплавок

   Мягкое  железо специально выплавляют в мартеновских печах и конвертерах и применяют  для регулирования содержания углерода в процессе электроплавки. В железе содержится 0,01—0,15 % С и <0,020 % Р. Поскольку в электропечах выплавляют основное количество легированных сталей, то для их производства используют различные легирующие добавки; электролитический никель или МЮ, феррохром, ферросилиций, ферромарганец, ферромолибден, ферровольфрам и др. В качестве раскислителя помимо ферромарганца и ферросилиция применяют чистый алюминий. Для науглероживания используют передельный чугун, электродный бой; для наведения шлака применяют свежеобожженную известь, плавиковый шпат, шамотный бой, доломит и MgO в виде магнезита  

   Подготовка  материалов к плавке

   Все присадки в дуговые печи необходимо прокаливать для удаления следов масла и влаги. Это предотвращает  насыщение стали водородом. Ферросплавы  подогревают для ускорения их проплавления. Присадка легирующих, раскислителей и шлакообразующих в современной печи во многом механизирована. На бункерной эстакаде при помощи конвейеров происходит взвешивание и раздача материалов по мульдам, которые загружаются в печь мульдовыми машинами. Сыпучие для наводки шлака вводят в электропечи бросательными машинами

   Технология  плавки

   Плавка  в дуговой печи начинается с заправки печи. Жидкоподвижные нагретые шлаки  сильно разъедают футеровку, которая  может быть повреждена и при загрузке. Если подина печи во время не будет  закрыта слоем жидкого металла  и шлака, то она может быть повреждена дугами. Поэтому перед началом  плавки производят ремонт – заправку подины. Перед заправкой с поверхности  подины удаляют остатки шлака  и металла. На поврежденные места  подины и откосов – места перехода подины в стены печи – забрасывают  сухой магнезитовый порошок, а в  случае больших повреждений –  порошок с добавкой пека или смолы 

   Заправку  производят заправочной машиной, выбрасывающей  через. насадку при помощи сжатого воздуха заправочные материалы, или, разбрасывающей материалы по окружности с быстро вращающегося диска, который опускается в открытую печь сверху

   Загрузка  печи

   Для наиболее полного использования  рабочего пространства печи в центральную  ее часть ближе к электродам загружают  крупные куски (40 %) , ближе к откосам  средний лом (45%) , на подину и на верх загрузки мелкий лом (15%) . Мелкие куски должны заполнять промежутки между крупными кусками

   Период  плавления 

   Расплавление  шихты в печи занимает основное время  плавки. В настоящее время многие операции легирования и раскисления металла переносят в ковш. Поэтому длительность расплавления шихты в основном определяет производительность печи. После окончания завалки опускают электроды и включают ток. Металл под электродами разогревается, плавится и стекает вниз, собираясь в центральной части подины. Электроды прорезают в шихте колодцы, в которых скрываются электрические дуги. Под электроды забрасывают известь для наведения шлака, который закрывает обнаженный металл, предохраняя его от окисления. Постепенно озеро металла под электродами становится все больше. Оно подплавляет куски шихты, которые падают в жидкий металл и расплавляются в нем. Уровень металла в печи повышается, а электроды под действием автоматического регулятора поднимаются вверх. Продолжительность периода расплавления металла равна 1—3 ч в зависимости от размера печи и мощности установленного трансформатора. В период расплавлени” трансформатор работает с полной нагрузкой и даже с 15 % перегрузкой, допускаемой паспортом, на самой высокой ступени напряжения. В этот период мощные дуги не опасны для футеровки свода и стен, так как они закрыты шихтой. Остывшая во время загрузки футеровка может принять большое количество тепла без опасности ее перегрева. Для ускорения расплавления шихты используют различные методы. Наиболее эффективным является применение мощных трансформаторов. Так, на печах вместимостью 100 т будут установлены трансформаторы мощностью 75,0 МВ-А, на 150-т печах трансформаторы 90—125 МВ*А и выше. Продолжительность плавления при использовании мощных трансформаторов уменьшается до 1–1,5 ч. Кроме того, для ускорения расплавления применяют топливные мазутные или газовые горелки, которые вводят в печь либо через рабочее окно, либо через специальное устройство в стенах. Применение горелок ускоряет нагрев и расплавление шихты, особенно в холодных зонах печи. Продолжительность плавления сокращается на 15—20 мин

   Эффективным методом является применение газообразного  кислорода. Кислород подают в печь как  через стальные футерованные трубки в окно печи, так и при помощи фурмы, опускаемой в печь сверху через  отверстие в своде. Благодаря  экзотермическим реакциям окисления  примесей и железа выделяется дополнительно  большое количество тепла, которое  нагревает шихту, ускоряет ее полное расплавление. Использование кислорода  уменьшает длительность нагрева  ванны. Период расплавления сокращается  на 20—30 мин, а расход электроэнергии на 60—70 кВт-ч на 1 т стали.

   Традиционная  технология электроплавки стали предусматривает работу по двум вариантам: 1) на свежей шихте, т.е. с окислением; 2) переплав отходов. При плавке по первому варианту шихта состоит из простых углеродистых отходов, малоуглеродистого лома, металлизованных окатышей с добавкой науглероживателя. Избыточное количество углерода окисляют в процессе плавки. Металл легируют присадками ферросплавов для получения стали нужного состава. Во втором варианте состав стали почти полностью определяется составом отходов и легирующие добавляют только для некоторой корректировки состава. Окисления углерода не производят

   Плавка  с окислением

   Рассмотрим  ход плавки с окислением. После  окончания периода расплавления начинается окислительный период, задачи которого заключаются в следующем: окисление избыточного углерода, окисление и удаление фосфора; дегазация  металла; удаление неметаллических  включений, нагрев стали 

   Окислительный период плавки начинают присадкой железной руды, которую дают в печь порциями. В результате присадки руды происходит насыщение шлака FeO и окисление металла по реакции: (FeO) =Fe+[O]. Растворенный кислород взаимодействует с растворенным в ванне углеродом по реакции [C] +[O]=CO. Происходит бурное выделение пузырей CO, которые вспенивают поверхность ванны, покрытой шлаком. Поскольку в окислительный период на металле наводят известковый шлак с хорошей жидкоподвижностью, то шлак вспенивается выделяющимися пузырями газа. Уровень шлака становится выше порога рабочего окна и шлак вытекает из печи. Выход шлака усиливают, наклоняя печь в сторону рабочего окна на небольшой угол. Шлак стекает в шлаковик) , стоящую под рабочей площадкой цеха. За время окислительного периода окисляют 0,3—0,6 % C со средней скоростью 0,3—0,5 % С/ч. Для обновления состава шлака одновременно с рудой в печь добавляют известь и небольшие количества плавикового шпата для обеспечения жидкоподвижности шлака

   Непрерывное окисление ванны и скачивание окислительного известкового шлака  являются непременными условиями удаления из стали фосфора. Для протекания реакции окисления фосфора 2[P]+5[O]=(P2O5) ; (Р2O5) +4(СаО) ==(СаО) 4*P2O5 необходимы высокое содержание кислорода в металле и шлаке, повышенное содержание CaO в шлаке и пониженная температура

   В электропечи первые два условия  полностью выполняются. Выполнение последнего условия обеспечивают наводкой свежего шлака и постоянным обновлением  шлака, так как шлак, насыщенный (СаО) 4*P2O5 скачивается из печи. По ходу окислительного периода происходит дегазация стали—удаление из нее водорода и азота, которые выделяются в пузыри СО, проходящие через металл

Информация о работе Способы варки стали, преимущества и недостатки существующих методов варки