Автор работы: Пользователь скрыл имя, 01 Ноября 2010 в 16:58, Не определен
раскрыты все аспекты изготовления шестерен
СОДЕРЖАНИЕ
Металловедением называется наука, устанавливающая связь между составом, структурой и свойствами металлов и сплавов и изучающая закономерности их изменения при тепловых, химических, механических, электромагнитных и радиоактивных воздействиях.
Все металлы и сплавы принято делить на две группы.
Железо и сплавы на его основе (сталь, чугун) называют черными металлами, а остальные металлы (Be, Mg, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Sn, W, Au, Hg, Pb и др.) и их сплавы – цветными.
Современное машиностроение характеризуют непрерывно растущая энергонапряженность, а также тяжелые условия эксплуатации машин. Такие условия работы машин предъявляют к материалам особые требования. Для удовлетворения этих требований создано много сплавов на основе различных металлов.
В современной технике широко применяют стали, обеспечивающие высокую конструктивную прочность, и сплавы, которые остаются прочными при высоких температурах, вязкими при температурах, близких к абсолютному нулю, обладающие высокой коррозионной стойкостью в агрессивных средах или другими физико-химическими свойствами.
Число новых сплавов непрерывно растет.
В специальном машиностроении все шире применяют так называемые композиционные материалы, сплавы с памятью формы и т.д.
За
последние годы достижения материаловедения
обеспечили небывалый прогресс в разработке
конструкционных и инструментальных материалов
в различных областях техники. Исследования
реальной структуры твердых тел показали
принципиальную возможность получения
сплавов с прочностью, приближающейся
к теоретической, определяемой прочностью
межатомных связей.
В курсовой работе назначена марка материала для изготовления- сталь 15Х2НГТА.Это означает, что в стали содержится 0,15 % углерода,2% хрома,1% никеля,1 % марганца,1 % титана, сталь высококачественная, т.е. в ней содержится уменшенное количество примесей фосфора и серы.
Наличие хрома повышает прочность, коррозионную стойкость, прокаливаемость (при этом пластичность и вязкость падают).
В
хромистых сталях в большей степени
развивается промежуточное
Никель находится только в твердом растворе и повышает коррозионные свойства сталей, а также прочность и вязкость.
Марганец и никель являются аустенизаторами, т.е. растворяясь в железе, расширяет область аустенита.
Метод
упрочнения (термообработки): цементация
(газовая).
В качестве способа термической обработки зубьев принимаем газовую цементацию с последующей закалкой и низким отпуском.
Цементацией
называется процесс насыщения
Для цементации обычно используют низкоуглеродистые стали 0,1÷0,18% С. Для крупногабаритных деталей применяют стали с более высоким содержанием углерода (0,2÷0,3%). Выбор таких сталей необходим для того, чтобы сердцевина изделия, не насыщающаяся углеродом при цементации, сохраняла высокую вязкость после закалки.
Для цементации детали поступают после механической обработки нередко с припуском на шлифование 0,05÷0,10 мм. Во многих случаях цементации подвергается только часть детали; тогда участки, не подлежащие упрочнению, защищают тонким слоем меди (0,02÷0,04 мм), которую наносят электролитическим способом или изолируют специальными обмазками, состоящими из смеси огнеупорной глины, песка и асбеста, замешанных на жидком стекле, и др.
Цементацию проводят при температурах 920÷950°С, когда устойчив аустенит, растворяющий в больших количествах углерод. При цементации стали атомы углерода диффундируют в решетку γ-железа. По достижении предела насыщения аустенита углеродом, определяемого линией SE на диаграмме Fe-Fe3C, на поверхности может образоваться сплошной слой цементита.
В реальных условиях цементации образование на поверхности слоя цементита наблюдается крайне редко. Обычно при температуре цементации 920÷950°С диффузионный слой состоит только из аустенита, а после медленного охлаждения – из продуктов его распада – феррита и цементита.
Цементированный слой имеет переменную концентрацию углерода по глубине, убывающей от поверхности к сердцевине детали. В связи с этим после медленного охлаждения в структуре цементованного слоя можно различить (от поверхности к сердцевине) три зоны: заэвтектоидную, состоящую из перлита и вторичного цементита и образующую сетку по бывшему зерну аустенита; эвтектоидную, состоящую из одного пластинчатого перлита, и доэвтектоидную зону, состоящую из перлита и феррита. Количество феррита в этой зоне непрерывно возрастает по мере приближения к сердцевине.
За техническую (эффективную) толщину цементованного слоя обычно принимают сумму заэвтектоидной, эвтектоидной и половины переходной (доэвтектоидной) зон или глубину до твердости HRC50 или HV500÷600 после закалки.
Опыт показывает, что толщина цементованного слоя для деталей, изготовляемых из стали с ≤ 0,17% С, составляет 15% от наименьшей толщины или диаметра цементуемого сечения. При содержании в стали > 0,17% С толщину слоя уменьшают до 5÷9%, а для изделий, работающих на износ, не испытывающих больших удельных нагрузок, до 3÷4% от наименьшей толщины или диаметра цементуемого сечения. Чаще всего толщина слоя 0,5÷2,0 мм.
Концентрация
углерода в поверхностном слое должна
составлять 0,8÷1,0%. Для получения максимального
сопротивления контактной усталости содержание
углерода может быть повышено до 1,1÷1,2%.
Более высокая концентрация углерода
вызывает ухудшение механических свойств
цементуемого изделия.
Под
цементацией принято понимать процесс
высокотемпературного насыщения поверхностного
слоя стали углеродом. Так как углерод
в α-фазе практически нерастворим, то процесс
цементации осуществляется в интервале
температур 930–950 °С — т. е. выше α → γ-превращения.
Структура поверхностного слоя цементованного
изделия представляет собой структуру
заэвтектоидной стали (перлит и цементит
вторичный), поэтому для придания стали
окончательных — эксплуатационных —
свойств после процесса цементации необходимо
выполнить режим термической обработки,
состоящий в закалке и низком отпуске;
температурно-временные параметры режима
термической обработки назначаются в
зависимости от химического состава стали,
ответственности, назначения и геометрических
размеров цементованного изделия. Обычно
применяется закалка с температуры цементации
непосредственно после завершения процесса
химико-термической обработки или после
подстуживания до 800–850 °С и повторного
нагрева выше точки АС3 центральной (нецементованной)
части изделия. После закалки следует
отпуск при температурах 160–180 °С.
Цементация
как процесс химико-
Цементация
производится в углероднасыщенных
твердых, жидких или газообразных средах,
называемых карбюризаторами, основные
составы которых приведены в табл. 1, а
в табл. 2 и 3 даны рекомендации по режимам
термической обработки цементованных
изделий.
При твердофазной цементации процесс ведут следующим образом. Цементуемые детали упаковываются в цементационные ящики таким образом, чтобы их объем, в зависимости от сложности конструкции детали, занимал от 15 до 30 % объема цементационного ящика. Ящики загружают в печь, нагретую до температур от 600–700 °С и нагревают до температуры цементации — 930–950 °С. По окончании процесса цементации ящики вынимаются из печи — охлаждение деталей ведется внутри цементационных ящиков на воздухе. К числу недостатков цементации в твердых карбюризаторах относятся: невозможность регулирования степени насыщения и невозможность проведения закалки непосредственно после цементации, дополнительный непродуктивный расход энергии на прогрев цементационных ящиков и т. п. Однако простота метода, возможность проводить процесс на стандартном печном оборудовании без установки дополнительных устройств делают этот метод весьма распространенным в условиях мелкосерийного производства в ремонтных цехах и на участках крупных предприятий.
Окончательные свойства цементованных изделий достигаются в результате термической обработки, выполняемой после цементации. Этой обработкой можно исправить структуру и измельчить зерно сердцевины и цементованного слоя, неизбежно увеличивающихся во время длительной выдержки при высокой температуре цементации, получить высокую твердость в цементованном слое и хорошие механические свойства сердцевины; устранить карбидную сетку в цементованном слое, которая может возникнуть при насыщении его углеродом до заэвтектоидной концентрации.
Закалка заключается в нагреве стали на 30÷50°С выше Ас3 для доэвтектоидных сталей или Ас1 для заэвтектоидных сталей, выдержке для завершения фазовых превращений и последующем охлаждении со скоростью выше критической. Для углеродистых сталей это охлаждение проводят чаще в воде, а для легированных – в масле или в других средах. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки обязательно подвергают отпуску.
Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости, износостойкости и прочности, а конструкционную сталь – для повышения прочности, твердости, получения достаточно высокой пластичности и вязкости; для ряда деталей также и высокой износостойкости.
В большинстве случаев после цементации применяют закалку выше точки Ас1 (сердцевины) при 820÷850°С.
После газовой цементации применяют закалку без повторного нагрева, а непосредственно из цементационной печи после подстуживания изделий до 840÷860°С. Такая обработка не исправляет структуры цементованного слоя и сердцевины. Поэтому непосредственную закалку применяют только в случае, когда изделия изготовлены из наследственно мелкозернистой стали. Для уменьшения деформации цементованных изделий выполняют также ступенчатую закалку в горячем масле 160÷180°С.
Иногда термическая обработка состоит из двойной закалки и отпуска. Первую закалку (или нормализацию) с нагревом до 880÷900°С назначают для исправления структуры сердцевины. Кроме того, при нагреве в поверхностном слое в аустените растворяется цементитная сетка, которая при быстром охлаждении вновь не образуется. Вторую закалку проводят с нагревом до 760÷780°С для устранения перегрева цементованного слоя и придания ему высокой твердости. Недостаток такой термической обработки заключается в сложности технологического процесса, повышенном короблении, возникающем в изделиях сложной формы, и возможности окисления и обезуглероживания.
В результате термической обработки поверхностный слой приобретает структуру мартенсита или мартенсита с небольшим количеством избыточных карбидов в виде глобулей.
Информация о работе Разработка технологического процесса изготовления шестерни