Автор работы: Пользователь скрыл имя, 31 Октября 2010 в 23:43, Не определен
Цель работы – изучение современных технологических процессов переработки техногенных отходов металлургического производства
В настоящее время технология изготовления металлургических брикетов способом вибропрессования отработана на различных линиях отечественного и импортного производства.
В тесном сотрудничестве с металлургами ряда предприятий, как на территории России, так и за её пределами, удалось определить область применения брикетов в металлургической промышленности и разработать соответствующие составы для конкретных предприятий России, Беларуси, Латвии, Украины, Бразилии, Мексики.
В настоящее время разработан и выпущен целый ряд технических условий, отработаны составы металлургических брикетов, начиная от простых, в основу которых входит практически весь перечень железо-углеродо-содержащих материалов, и, заканчивая эксклюзивными, где в качестве углерода применяются отходы древесного угля из эвкалипта для металлургических предприятий Бразилии.
В таблице 1 представлены наиболее характерные образцы брикетов для различных переделов металлургической промышленности.
По технологическому предназначению
металлургические брикеты условно
можно разбить на три крупных
класса.
К первому классу относятся самовосстанавливающиеся брикеты, то есть компоненты брикета состоят из оксидов железа и углерода, идущего на восстановление и науглераживание восстановленного железа. В условиях восстановительной и окислительной атмосферы это соотношение различно. Вторичным фактором регулирования соотношения углерод/оксиды железа является открытая пористость брикета, которая в одном случае привлекает восстановительный газ в печи для процессов, идущих в теле брикета, в другом, не дает доступа кислорода для дополнительного окисления углерода. Основным принципом работы брикетов данного класса является прямое восстановление оксидов железа углеродом за счет многочисленных и сильно развитых контактов этих составляющих внутри брикетов.
В этом случае большую роль играет фракционный состав компонентов, который должен быть достаточно мелким, то есть для кокса фракция - менее 3 мм, для оксидов - менее 5 мм. Данный тип брикетов в сталеплавильном переделе заменяет чугун или стальной лом и играет роль карбюризатора, в доменном – экономит кокс. Очень важно, чтобы содержание железа в брикете не было меньше композиционной шихты металлургического передела. Например, содержание железа в суммарной шихте доменных печей, работающих на передельном чугуне, составляет, в среднем, 44-45%. Применение железо-углеродо-содержащих брикетов с таким содержанием железа и выше не только экономит кокс, но и повышает производительность агрегата. Применение шламов, колошниковой пыли, пылей с электрофильтров, с этой точки зрения, ограничивается в составе брикетов.
Возможность свободного изменения соотношения окислительных и восстановительных компонентов, а также фракционного состава обусловливает технологическую ценность и целесообразность применения предлагаемых нами металлургических брикетов в качестве составляющей металлошихты при выплавке чугуна и стали в различных металлургических агрегатах.
Расчетное содержание компонентов для конкретного металлургического передела позволяет в значительной степени компенсировать затраты тепловой энергии и металлургического кокса, необходимого для восстановления окисленных железосодержащих материалов.
Наличие
в брикете углерода и оксидов
железа с развитой межфазной поверхностью
и необходимой пористостью
Окисление
углерода представляет собой сложную
многостадийную гетерогенную реакцию,
заканчивающуюся образованием газовой
фазы в виде смеси оксидов СО и
СО2 с высокой энергетикой. Отсюда
следует, что важнейшим показателем оксидо-железо-углеродо-
Этот показатель определяется фракционным составом компонентов брикета. За счет развития твердофазных реакций восстановления железа углеродом в теле брикета при нагреве до 1150-1170°С оксиды железа восстанавливаются полностью, причем максимум скорости окисления углерода, равный 0,5% С/мин находится в интервале температур 1000-1050°С, при этом начало твердофазного взаимодействия происходит при температуре 800 0 С. При избытке оксидов в брикете, что важно при сталеплавильном переделе, окисление примесей чугуна происходит за счет кислорода оксидов, при постоянном барботировании ванны жидкого металла выделяющимися СО и СО2. Для доменного передела соотношение углерода и окислов железа должно быть подобрано так, чтобы обеспечить как можно более полное их восстановление.
Ко второму классу относятся металлургические брикеты, в которые не добавляются углеродистые составляющие, то есть их основой является восстановленное железо, оксиды железа и флюсующее вяжущее. Технологическая задача этих брикетов состоит в создании фракционной шихты с высоким содержанием железа из мелкофракционных и тонкодисперсных материалов, к которым можно отнести отсев чугунной дроби, чугунную стружку, металлоотсевы, дробленую стальную стружку, окалину и т.п. В данном случае экономический эффект достигается за счет улучшения газодинамики процесса, повышения содержания железа в шихте, уменьшения потерь шихты. Данный тип брикетов наиболее приемлем для шахтных печей.
К третьему классу относятся специальные брикеты и совмещенные с первым и вторым классами. Например, брикеты на основе прокатной окалины, имеющие высокое содержание железа общего, закиси железа (до 60%), применяются как промывочный железосодержащий материал металлоприемников доменных печей, брикеты на основе титаносодержащих компонентов (в т.ч. металлоотсев феррованадиевого производства), наоборот, для наращивания гарнисажа.
4.Применение в черной металлургии брикетов из окалины.
Технологический брикет рекомендуется к применению в следующих металлургических переделах.
Доменное производство:
железотопливный брикет, как заменитель железосодержащего сырья( агломераты, окатышей, металлодобавок) и доменного кокса;
железооксидный брикет для промывки горна доменных печей (FeO 40-60%);
железотопливный брикет с марганцем и кремнием для выплавки специальных марок чугуна;
специальный брикет для наращивания гарнисажа металлоприемника доменных печей.
Сталеплавильное производство:
железотопливный брикет, как заменитель чугуна, углеродистого скрапа, углеродосодержащих и флюсов;
железотопливный брикет с раскисляющими легирующими добавками (Mn, Si,Al и т.п.);
рудноизвестковый
брикет для шлакообразования и регулирования
температуры металлической
Ферросплавное производство:
композиционный брикет для выплавки ферросплавов (с FeSi, FeCr, FeS, Cr, SiMn, FeMn, Al и углеродом в виде коксовой и графитовой пыли и мелочи, порошкового древесного угля).
Электросталеплавильное производство:
композиционный брикет с легирующими добавками, с древесным углем только в качестве восстановителя
Литейное производство на машиностроительных заводах:
композиционный брикет с легирующими добавками, с древесным углем только в качестве восстановителя.
Замасленная окалина прокатного производства, запасы которой только на металлургических предприятиях Урала оцениваются в 30 млн т, может стать источником сырья. Содержание железа в окалине – около 70%, что гораздо выше, чем в руде или железорудном концентрате. Утилизация окалины в аглодоменном и сталеплавильном производстве невозможна по причинам нарушения норм пожарной безопасности и непредсказуемости хода техпроцесса.
Технология брикетирования окалины, среди авторов которой – С. Сироткин, В. Кузнецов, В. Александров (ОАО «ПНТЗ», ООО «Экорус», г. Первоуральск, ООО «НТЦ «Трубметпром», г. Челябинск), позволяет выплавлять из нее высококачественный чугун.
Традиционно замасленная окалина обезмасливается с получением сухой, легко утилизируемой окалины. Однако и химическое, и термическое обезмасливание – дорогостоящие процессы. Рациональное решение проблемы – окускование мелкозернистых и тонкодисперсных частиц окалины.
Брикеты из окалины получают прессованием в пресс-форме, представляющей собой глухую цилиндрическую матрицу с двумя пуансонами. В качестве сырья используется смесь сухой окалины (влажность не более 10%) и замасленной окалины (содержание масла до 10%) с жидким стеклом. Первый этап – дробление, получение мелкодисперсного порошка. Затем его смешивают с жидким стеклом до однородной трехкомпонентной массы, при температуре 70-90°С. Следующий этап – прессование и получение брикета в форме чечевицы с цилиндрическим пояском массой 0,15 кг/шт. Затем – технологическая выдержка для упрочнения брикета. В готовых брикетах содержание масла не превышает 1%, что допустимо технологией доменного производства. На эту новую продукцию в 2003 г. разработаны технические условия ТУ 072600 – 001 – 38576343 – 03 «Брикеты из железосодержащей окалины». Определена цена 1 т брикетов на уровне цены окатышей Лебединского ГОКа. С комбинатом «Мечел» (Челябинск) заключен договор на поставку опытной партии брикетов в количестве 170 т.
На Первоуральском Новотрубном заводе (ПНТЗ) пущена опытно-промышленная линия брикетирования окалины, оснащенная 10 гидравлическими прессами модульного типа. Она проработала четыре месяца в опытно-промышленном режиме, выпустив около 100 т брикетированной окалины. Брикеты прошли все необходимые технологические испытания, в том числе на базе НТЦ ОАО «Мечел». Из брикетов можно получать качественный чугун. Мощность печей цеха № 17 – около 10 тыс. т/год, – столько же брикетов позволяет производить новая линия, в дальнейшем можно будет перерабатывать до 100 тыс. т/год.
Совместно
с сотрудниками кафедры «Обработка
металлов давлением» УГТУ-УПИ ведется
отработка технологии обезмасливания
окалины. Это позволит брикетировать
окалину в горячем состоянии.
Гидравлический пресс
Возможно
брикетировать и
Заключение
Рассмотренный
технологический процесс
Библиографический список