Производство чугуна

Автор работы: Пользователь скрыл имя, 18 Сентября 2012 в 15:33, контрольная работа

Описание работы

Какие требования предъявляются к железорудному сырью и топливу для современных доменных печей? Какие железорудные материалы и топливо удовлетворяют этим требованиям и применяются для выплавки чугуна?

Файлы: 1 файл

Варианты 63.doc

— 588.50 Кб (Скачать файл)


ВАРИАНТ 63

КОНТРОЛЬНАЯ РАБОТА №1

Вопрос 6

Какие требования предъявляются к железорудному сырью и топливу для современных доменных печей? Какие железорудные материалы и топливо удовлетворяют этим требованиям и применяются для выплавки чугуна?

 

Железные руды состоят из рудного минерала, пустой породы и примесей. Рудным минералом называют природные химические соединения железа (чаще всего окислы). В доменных печах железо практически полностью (98—99%) переходит в состав чугуна.

Пустая порода (балластные соединения, не содержащие железа) может и меть различный химический состав. Обычно она состоит из кварцита  или песчаника с примесью глинистых веществ и реже — из известняка или доломита. В доменной печи пустая порода плавится и переходит в состав шлака.

В зависимости от количества пустой породы железные руды разделяют на богатые, содержащие 45—70% железа, и бедные. Богатые руды после дробления и сортировки направляют в плавку, а бедные подвергают обогащению, в результате которого увеличивается относительное количество окислов железа.

В железных рудах всегда содержится некоторое количество вредных примесей — серы, мышьяка и фосфора.

Для выплавки чугуна применяют красный, бурый, магнитный и шпатовый железняки, а также комплексные железные руды.

Красный железняк (гематит) содержит 55—70% железа в виде безводной окиси железа Ре2О3 . Примесей серы и фосфора в нем мало. Пустой породой железняка обычно является кварцит. Плотность и прочность красного железняка весьма различны. Восстановимость его в доменных печах хорошая.

Бурый железняк содержит 35—55% железа в виде водных окислов и чаще всего в виде лимонита. В некоторых видах бурого железняка содержится много фосфора. Пустая порода имеет песчано-глинистое происхождение. Находящаяся в буром железняке гидратная влага при высоких температурах удаляется, руда становится пористой и хорошо восстановимой.

Магнитный железняк (магнетит) содержит 50—69% железа (в чистом виде 72,4%) в форме закиси-окиси железа Ре3О4. Пустую породу составляет кремнезем с некоторым количеством других окислов. Этот железняк — наиболее плотная железная руда темно-серого или черного цвета. В некоторых случаях магнитный железняк содержит много серы (до 1,5—2%) и загрязнен цинком. Восстанавливается магнитный железняк труднее, чем остальные железные руды.

Шпатовый железняк (сидерит) содержит 30—40% железа в виде углекислой соли РеСО3. В чистом сидерите 48,2% Ре. Пустая порода сидерита состоит из кремнезема, глинозема и небольшого количества окиси магния. В некоторых случаях сидерит имеет песчано-глинистую пустую породу. Сидерит может быть желтовато-белого или серого цвета. Он легко выветривается (окисляется на воздухе) и, теряя СО.,, превращается в бурый железняк. Сидерит обладает наиболее высокой восстановимостыо из всех железных руд. Перед загрузкой в доменную печь сидерит обычно обжигают. В результате руда становится очень пористой и легко дробится, образуя лишь небольшие количества мелочи и пыли. В некоторых случаях в доменную печь загружают необожженный сидерит.

Комплексные железные руды, кроме железа, содержат и другие металлы, которые во время плавки переходят в чугун и легируют его, т. е. улучшают многие его свойства. К более ценным комплексным железным рудам относятся следующие:

хромоникелевая железная руда, представляющая собой бурый железняк (35—40% Ре) с примесью хрома (0,8—1,6%) и никеля (0,4—0,7%);

ванадистые титаномагнетиты. Руды их состоят из смеси магнетита Ре2О3, ильменита РеО х хТЮ3 и трехокиси ванадия У2О3 и содержат 38—47% Ре, 5—15% ТЮ2, 0,3—0,5% V. При плавке значительное количество титана переходит в состав шлака, из которого титан извлекают химическим путём;

хромистый железняк. Рудный минерал этих руд — хромит РеО-СЮ3, обладающий очень высокой температурой плавления.

Марганцевые руды. Железные руды обычно содержат незначительное количество марганца, поэтому при выплавке чугуна в шихту приходится добавлять марганцевую руду.

Рудным минералом марганцевых руд могут быть некоторые окислы марганца: МпО2 (перекись марганца — пиролизит), Мп,203 (окись марганца — браунит), Мп3О4 (закись-окись марганца — гаусманит) и соединения окислов марганца с окислами других элементов.

В доменном производстве применяют марганцевые руды с содержанием 25—40% Мп. Пустая порода этих руд обычно глинистый песок. Поэтому марганцевые руды непрочны: при добыче и перевозке образуется много мелочи и пыли. На некоторых рудниках марганцевые руды промывают водой для обогащения.

В доменную печь загружают также некоторое количество металлургических отходов: колошниковую пыль (30-45% Fe и 3-12% С), которую предварительно подвергают окускованию; металлический скрап; передельные шлаки сталеплавильного производства с повышенным содержанием марганца (10-18% Ре, 6-10% Мп); окалину прокатного и кузнечного производств и сварочные шлаки.

Для выплавки чугуна применяют твердое топливо.

Более 98% чугуна выплавляют на коксе и 1-2 % на древесном угле.

Топливо выполняет в доменной печи очень важную роль. Его горение создает высокие температуры, необходимые для восстановления руды, плавления и перегрева образующихся чугуна и шлака. Кроме того, часть углерода топлива непосредственно участвует в реакциях восстановления руды.

Используемый в доменном производстве кокс должен обладать высокой теплотой сгорания, достаточной прочностью и пористостью и содержать минимальное количество вредных примесей (серы и фосфора) и зол.

 

Вопрос 139

Перечислите основные виды брака чугунного и стального литья. Укажите причины образования брака и меры его предотвращения.

Раковины

Виды раковин. Наиболее частым видом литейного брака являются всевозможные раковины. Они выявляются большей частью только в процессе механической обработки отливок.

Раковины бывают газовые, усадочные (рыхлость и пористость), песочные и шлаковые.

Раковины газовые. Газовые раковины — это сферические или округленные пустоты с гладкой блестящей (у закрытых) или окисленной (у открытых) поверхностью, расположенные снаружи отливки или внутри ее.

Газовые раковины, образовавшиеся за счет плохого качества металла, чаще всего имеют малые размеры и разбросаны по всей массе отливки. Газовые раковины, образовавшиеся за счет дефектов форм и неправильной технологии заливки, концентрируются чаще всего на отдельных определенных участках формы и находятся на небольшой глубине от поверхности или стержня.

Причины образования газовых раковин следующие:

1. Выделение газов из металла вследствие уменьшения растворимости их в металле при его кристаллизации. Пузырьки газа стремятся всплыть на поверхность, часть их не успевает уйти за пределы отливки и остается в ней в виде газовых раковин.

2. Конструкция формы с такими поверхностями, которые затрудняют удаление скопившихся газов. Это вызывает образование раковин на поверхности отливки.

3. Плохая газопроницаемость формовочной смеси, в частности для стержней, при большом газообразовании.

4. Неудачный состав переплавляемой шихты, загрязненной ржавчиной, серой, водородом, исходным металлом, уже насыщенным газом, замасленной стружкой, а также присутствие в шихте влаги и чрезмерное содержание серы в коксе, нефти (в мазуте) и в сланцевом масле, если оно служит топливом.

5. Неправильное ведение плавки, вызывающее насыщение металла газом в процессе плавки, если металл плохо раскислен.

6. Слишком большая скорость заливки форм. Когда скорость заполнения формы металлом больше скорости отвода из нее газов, оставшиеся газы вызывают в отливках образование газовых раковин. Чем меньше скорость заливки, тем больше остается времени для удаления газов и воздуха через поры и вентиляционные каналы формы. При этом отпадает опасность прохождения газов через жидкий металл.

7. Неудачные способ заполнения формы — заливка прерывающейся струей. При быстрой заливке металла в форму сверху образуются брызги; они окисляются и при отливке чугуна и стали могут вызвать появление раковин за счет выделения окиси углерода при восстановлении окислов железа углеродом. Алюминиевая бронза и алюминиевые сплавы при заливке форм сверху вспениваются. Это также вызывает в отливке газовые раковины.

8. Недостаточное сечение или неправильное расположение выпора.

9. Насыщение чугуна в вагранке газами при избыточном количестве влаги в воздухе, подаваемом в вагранку.

10. Недостаточно горячий металл может содержать газовые пузыри, не успевающие выделиться при охлаждении металла.

11. Разливка металла в плохо высушенный и недостаточно нагретый ковш. Носок ковша должен быть особенно хорошо высушен перед разливкой.

12. Излишняя влажность формовочной смеси в отдельных местах, если форму приходится исправлять после выемки модели.

13. Чрезмерное уплотнение земли и заглаживание формы, уменьшающей газопроницаемость.

14. Ржавая поверхность холодильников и кокилей, которая при соприкосновении с жидким чугуном реагирует с углеродом металла, образуя окись углерода (СО).

15. Неправильная конструкция литниковой системы, при которой возможно засасывание воздуха или неспокойное поступление металла в форму, врыв струи, образование вихрей и неправильное вентилирование газов из стержней (направление вниз или навстречу поступающему в форму жидкому металлу).

16. Заливка струей с большой высоты, когда происходит засасывание воздуха, вспенивание и разбрызгивание металла (с образованием «корольков»).

17. Газы, выделяющиеся вследствие химической реакции в самом металле. Сернистый газ (SO2) обычно вступает в реакцию с медью, образуя закись меди (Cu 2O) и сернистую медь (Cu 2S):SO 2 + 6Cu <> Cu 2S + 2Cu 2O.

Реакция эта, однако, может идти в обоих направлениях в зависимости от концентрации участвующих веществ. От взаимодействия сернистой меди с закисью меди может выделяться сернистый газ, нерастворимый в металле и дающий крупные пузыри. Такие случаи нередко имеют место в заводской практике и особенно опасны при разливки красной меди.

Мелкие газовые пузырьки могут получиться на поверхности отливки из бронзы с примесью свинца. Эта газовая пористость происходит при окрашивании формы краской, содержащей графит. Окислы свинца в бронзе восстанавливаются графитом с выделением окиси углерода на поверхности отливки, соприкасающейся с графитовой краской.

При замене графита тальком (3MgO * 4SiO sub>2 * H sub>2O) источником газовой пористости может явиться кристаллизационная вода, выделение которой при температуре бронзы, залитой в форму, вызывает повышенную пористость на поверхности отливки. Предварительное прокаливание талька до 1000o обеспечивает удаление кристаллизационной воды. Тогда газовой пористости на поверхности отливки не получится. Растворенный в никеле кислород, действуя на углерод и серу, образует с ними СО и SO2, вызывающие газовые раковины.

18. Газы, образующиеся от избытка смазки металлической формы при заливке в нее жидкого металла.

19. Газы, выделяющиеся из трещин на изношенных металлических формах (адсорбированные газы в трещинах изложниц).

20. Поглощение сернистого газа, образующегося при горении кокса, содержащего серу, при плавке в вагранку бронзы (что иногда практикуется в литейных).

Бронзой поглощаются и другие газы, всегда присутствующие в атмосфере вагранки (азот, кислород, углекислый газ, водяные пары, окись углерода, водород, углеводороды, летучая сера, сероводород и др.)

21. Выделение водорода и окиси углерода сплавами, содержащими магний, цинк, алюминий, кремний, при действии водяного пара и углекислого газа, например:

Mg + H2O = MgO + H2;

Zn + H2O = ZnO + H2;

2Al + 3CO2 = Al2O3 + 3CO;

Si + 2CO2 = SiO2 + 2СО,

22. Плохо обожженный древесный уголь, вследствие дополнительной перегонки выделяющей на поверхности расплавленного металла углеводороды и водород. Водород может при этом поглощаться хорошо раскисленным сплавом, например, алюминиевой бронзой, кремнистой латунью, и отливка окажется пузыристой.

23. Насыщенный газами исходный металл для переплавки. В процессе переплавки в вагранке такого насыщенного газами металла газы передаются литью как бы по наследству.

Раковине усадочные (рыхлость и пористость). Усадочные раковины имеют вид углублений и пустот неправильной формы, образующихся в тех метах отливки, где металл затвердевает в последнюю очередь. Иногда вместо концентрированных усадочных раковин наблюдается местная рыхлость и пористость, вследствие которых отливки не выдерживают давления при гидравлическом испытании и бракуются.

Основной причиной образования усадочных раковин является уменьшение объема металла при затвердевании и дальнейшем охлаждении. Размер усадочных раковин зависит от степени (величины) усадки и от температуры заливки металла в форму (высокая температура заливки устанавливает объем усадочных раковин), а также от конструкции и размеров отливки и от скорости заполнения формы.

Меры предупреждения. В тех частях отливок, где следует ожидать образования раковин, в формах устраивают соответствующие прибыли, из которых в период усадки отливка питается жидким металлом. Металл в прибыли должен затвердевать в последнюю очередь. Для устранения пористости применяют холодильники, ускоряющие затвердевание металла в соответствующих зонах.

Усадочные раковины и рыхлость можно устранять изменением конструкции формы, уменьшая скопления металла в отдельных ее частях.

Информация о работе Производство чугуна