Порошковые твердые сплавы

Автор работы: Пользователь скрыл имя, 24 Января 2016 в 12:56, контрольная работа

Описание работы

Твердые сплавы, материалы с высокой твердостью, прочностью, режущими свойствами, сохраняющимися при нагреве до высоких температур.
Различают спечённые и литые твёрдые сплавы. Главной особенностью спеченных твердых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах), а литые твердые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение).

Содержание работы

ВВЕДЕНИЕ 3
1 КЛАССИФИКАЦИЯ И МАРКИРОВКА 4
2 СВОЙСТВА СПЛАВОВ 5
3 ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ПРОИЗВОДСТВА 9
4 НОМЕНКЛАТУРА СПЕЧЕННЫХ ТВЕРДЫХ СПЛАВОВ 10
5 ЛИТЫЕ ТВЕРДЫЕ СПЛАВЫ 11
6 ПРИМЕНЕНИЕ И РАЗРАБОТКИ 12
ЗАКЛЮЧЕНИЕ 17
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Файлы: 1 файл

5 курс 10 сем Композиц твердые сплавы. Марков .Word.doc

— 310.50 Кб (Скачать файл)

4. Хорошо замешанная и подсушенная  смесь подвергается прессованию  при

давлении примерно 10—40 кГ/мм2 (98—392 Мн/м2), причем титановольфрамовые

смеси требуют большего давления прессования, чем вольфрамовые.

5. Далее производят предварительное спекание смеси при 900° С в течение примерно 1 часа в атмосфере водорода для создания прочности, необходимой при механической обработке. Предварительное спекание применяется не всегда.

6. После предварительного спекания  полученный сплав разрезают и механически обрабатывают на обычных  металлорежущих, станках-фрезерных, строгальных, токарных.

7. Окончательное спекание, в процессе  которого образуется твердый  сплав,

проводят в атмосфере водорода или в засыпке из порошка магнезита или окиси

алюминия - для вольфрамовых сплавов в течение 2 часов примерно при 1400° С, а

для титановольфрамовых в течение 1-3 ч при 1500° С. Качество спекания зависит от чистоты карбида титана: чем меньше в нем азота и кислорода, тем лучше идет спекание.

В результате спекания твердый сплав дает линейную усадку до 25%, становится чрезвычайно твердым и не поддается механической обработке. Твердые сплавы можно шлифовать зеленым карборундом «экстра» или подвергать электроискровой обработке.

Производство твердых сплавов требует особой чистоты, тщательного лабораторного контроля, соблюдения технологической дисциплины и всех тонкостей процесса. Качество и режущие свойства порошковых твердых сплавов зависят от технологии их производства не менее чем от их состава.

Кроме порошковых твердых сплавов, в машиностроении применяют и литые твердые сплавы, которые применяются или зернистыми или в виде электродов.

После наплавки они имеют структуру заэвтектического, легированного, белого чугуна и очень высокую твердость благодаря присутствию большого количества карбидов и карбидной эвтектики.

Литыми твердыми сплавами наплавляют штампы, токарные центры и сильно истирающиеся детали, что увеличивает в несколько раз их стойкость.

 

4 НОМЕНКЛАТУРА СПЕЧЕННЫХ ТВЕРДЫХ СПЛАВОВ

В России и бывшем СССР для обработки металлов резанием применяются следующие спеченные твердые сплавы в таблице 4.

Таблица 4 – Применяемые в РОССИИ твердые сплавы

Марка

сплава

WC %

TiC %

TaC %

Co %

Прочность на изгиб (у), МПа

Твёрдость, HRA

Плотность (с), г/см3

Теплопроводность (л), Вт/(м·°С)

Модуль Юнга (Е), ГПа

ВК2

98

2

1200

91,5

15,1

51

645

ВК3

97

3

1200

89,5

15,3

50,2

643

ВК3-М

97

4

1550

91

15,3

50,2

638

ВК4

96

4

1500

89,5

14,9-15,2

50,3

637,5

ВК4-В

96

4

1550

88

15,2

50,7

628

ВК6

94

6

1550

88,5

15

62,8

633

ВК6-М

94

6

1450

90

15,1

67

632

ВК6-ОМ

94

2

6

1300

90,5

15

69

632

ВК8

92

8

1700

87,5

14,8

50,2

598

ВК8-В

92

8

1750

89

14,8

50,4

598,5

ВК10

90

10

1800

87

14,6

67

574

ВК10-ОМ

90

10

1500

88,5

14,6

70

574

ВК15

85

15

1900

86

14,1

74

559

ВК20

80

20

2000

84,5

13,8

81

546

ВК25

75

25

2150

83

13,1

83

540

ВК30

70

30

2400

81,5

12,7

85

533

Т5К10

85

6

9

1450

88,5

13,1

20,9

549

Т5К12

83

5

12

1700

87

13,5

21

549,3

Т14К8

78

14

8

1300

89,5

11,6

16,7

520

Т15К6

79

15

6

1200

90

11,5

12,6

522

Т30К4

66

30

4

1000

92

9,8

12,57

422

ТТ7К12

81

4

3

12

1700

87

13,3

   

ТТ8К6

84

8

2

6

1350

90,5

13,3

   

ТТ10К8-Б

82

3

7

8

1650

89

13,8

   

ТТ20К9

67

9,4

14,1

9,5

1500

91

12,5

   

ТН-20

79

(Ni15%)

(Mo6%)

1000

89,5

5,8

   

ТН-30

69

(Ni23%)

(Mo29%)

1100

88,5

6

   

ТН-50

61

(Ni29%)

(Mo10%)

1150

87

6,2

   



 

 

5 ЛИТЫЕ ТВЕРДЫЕ СПЛАВЫ

Литые твёрдые сплавы получают методом плавки и литья.

Литые (наплавочные) твердые сплавы применяются для наплавки (покрытия) в расплавленном состоянии (с помощью газа или дуги) рабочих поверхностей быстроизнашивающихся деталей машин, приспособлений, инструментов с целью повышения их износоустойчивости и коррозийной стойкости.

Литые сплавы получаются в виде прутков диаметром 5- 7 мм, длиной 200-300 мм, которые затем при помощи газа наплавляются на режущие кромки или поверхности деталей, подвергающихся износу.

К этой группе относятся стеллиты и стеллитоподобные сплавы. Стеллиты представляют собой сплавы кобальта с содержанием вольфрама, хрома и углерода. В стеллитоподобных сплавах кобальт заменен железом, а вольфрам отсутствует.

Наплавка твёрдых сплавов производится преимущественно газовой ацетилено-кислородной горелкой и ведётся, как правило, в два, а иногда и в три слоя. Необходимость многослойной наплавки диктуется следующим: при наложении первого слоя наплавка представляет собой сплав твёрдого сплава с расплавленным основным металлом, поэтому такой сплав обладает пониженными твёрдостью и износоустойчивостью и не обеспечивает получения механических свойств чистого твёрдого сплава. Поэтому первый наплавленный слой обычно не может служить рабочей поверхностью, а является лишь подкладкой для нанесения второго слоя, который будет представлять собой почти чистый твёрдый сплав и обладать необходимыми механическими свойствами. В некоторых особо ответственных случаях прибегают к наплавке третьего слоя, представляющего собой практически уже чистый переплавленный твёрдый сплав.

Электродные сплавы представляют собой куски электродной проволоки, обмазанные специальными легирующими обмазками. Эти сплавы наплавляются с помощью электродуги.

Подобные электроды дают удовлетворительную наплавку в тех случаях, когда не предъявляется высоких требований к твёрдости и износостойкости наплавленного слоя.

6 ПРИМЕНЕНИЕ И РАЗРАБОТКИ

 В современной технике получают широкое распространение и быстро совершенствуются твёрдые сплавы. Развитие техники применения твёрдых сплавов идёт по двум направлениям: с одной стороны, совершенствуются и улучшаются составы твёрдых сплавов и технология их производства, с другой стороны, совершенствуется техника нанесения твёрдых сплавов на изделия.

Твердые сплавы ввиду своей высокой твердости применяются в следующих областях:

Обработка резанием конструкционных материалов: резцы, фрезы, сверла, протяжки и прочий инструмент (рис.6, а)

 

Рисунок 6 а – фрезы, резцы

Оснащение измерительного инструмента: оснащение точных поверхностей микрометрического оборудования и опор весов (рис.6, б)

 

Рисунок 6 б - микрометры

Клеймение: оснащение рабочей части клейм (рис.6, в)

 

Рисунок 6 в – клеймы

Штамповка: оснащение штампов и матриц выдавливания (рис.6, г)

Рисунок 6 г - штамп

 

 

Производство износостойких подшипников: шарики, ролики, обоймы и напыление на сталь (рис.6, д)

 

Рисунок 6 д – обоймы подшипников

 

 

 

 

Появление инструмента из твердых сплавов сопровождалось значительным повышением производительности труда при металлообработке за счет более высокой теплостойкости и сопротивляемости износу, позволяющих работать на скоростях резания, в 3-5 раз превышающих скорости резания для инструмента из быстрорежущих сталей.

Использование самых современных твердосплавных материалов, совершенствование технологии изготовления инструментов, методов их шлифовки и заточки, в том числе с применением алмазного инструмента, электрофизических и электрохимических методов обработки, - основные направления работ заводских специалистов, позволяющие поддерживать на высоком техническом уровне выпускаемые нами твердосплавные инструменты.

В настоящее время в отечественной твердосплавной промышленности проводятся глубокие исследования, связанные с возможностью повышения эксплуатационных свойств твердых сплавов и расширением сферы применения. В первую очередь эти исследования касаются химического и гранулометрического состава RTP(ready-to-press) смесей. Одним из удачных примеров за последнее время можно привести сплавы группы ТСН (ТУ 1966—001-00196121-2006), разработанных специально для рабочих узлов трения в агрессивных кислотных средах. Данная группа является логическим продолжением в цепочке сплавов ВН на никелевой связке, разработанных Всероссийским Научно-Исследовательским Институтом Твердых Сплавов. Опытным путём было замечено, что с уменьшением размера зерен карбидной фазы в твердом сплаве, качественно повышаются такие характеристики, как твердость и прочность. Технологии плазменного восстановления и регулирования гранулометрического состава в данный момент позволяют производить твердые сплавы размеры зерен (WC) в которых могут быть менее 1 микрона. Сплавы ТСН группы в настоящий момент находят широкое применение в производстве узлов химических и нефтегазовых насосов отечественного производства.

Возрастающие темпы развития производства требуют все большего объема выпуска режущего инструмента, штампов, пресс-форм, фильер. Это вызвало большой расход вольфрама.

В связи с расширением технологических возможностей при производстве твердых сплавов, развитием химии и порошковой металлургии, дефицитом вольфрама уже в начале 60-х годов начались интенсивные работы по созданию безвольфрамовых твердых сплавов.

Одно из направлений решения этой актуальной задачи - разработка новых марок твердых сплавов с применением карбидов титана TiC, гафния HfC, ниобия NbC, тантала TaC. Производство инструмента, оснащенного этими марками твердого сплава, позволяет заменить дефицитный вольфрам более дешевыми металлами, расширить номенклатуру используемых марок твердого сплава, что позволяет создать инструментальные материалы со специфическими свойствами, обладающими более высокими эксплуатационными характеристиками, применяющиеся для специальных видов работ.

В США, ФРГ, Австрии в начале 70-х годов налажено производство сплава Ферро-ТiC, который создан на основе карбида титана и стальной связки. Обладая высокой твердостью, износостойкостью и жаропрочностью, этот сплав является промежуточным между быстрорежущими сталями и твердыми сплавами. Он применяется для изготовления инструментов и конструкционных материалов, работающих в условиях интенсивного износа. Из него изготавливают детали штампов, пуансоны, протяжные кольца, валки, ролики, фильеры, режущие и измерительные инструменты.

В настоящее время для металлообработки создан целый ряд безвольфрамовых твердых сплавов на основе карбида и карбонитрида титана, которые применяются в различных сферах производства. Широко используются твердые безвольфрамовые сплавы марок ТН20, ТН50, КТН16, ЛЦК20, ТВ4.

Положительный опыт работы ряда организаций позволяет сделать вывод, что безвольфрамовые твердые сплавы найдут широкое применение для изготовления режущего и штампового инструмента, деталей машин, работающих в тяжелых условиях, оснастки и приспособлений.

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

Большая часть имеющихся твердых сплавов предназначена для обработки резанием различных материалов, в том числе чугунов, нержавеющих, жаропрочных и специальных сталей и сплавов. Важной областью применения твердых сплавов является их использование для волочения и калибрования проволоки, прутков, труб. В качестве материала для покрытия пластин используют карбиды, нитриды, бориды и силициды тугоплавких металлов IV— VI групп периодической системы элементов. Наиболее широко применяемыми соединениями такого рода являются карбид, нитрид, карбонитрид титана. В результате обработки на поверхности твердосплавной пластины образуется мелкозернистый слой соединений, обладающих высокой твердостью, износостойкостью и химической устойчивостью при высоких температурах. Повышению износостойкости инструмента посвящено много работ и исследования в этой области продолжаются и в настоящее время. И как результат качественных работ в этой области - огромная номенклатура всевозможного инструмента ведущих фирм производителей в области металлообработки таких как: Вальтер, Митсубиси, Сандвик, предлагающих инструмент с различным спектром износостойких покрытий, оптимальной геометрией, изготовленного из высококачественного инструментального материала, для, казалось бы, всех существующих условий работы инструмента на современном оборудовании, включая и скоростную обработку. Из всех существующих методов упрочнения инструмента выделим наиболее прогрессивные, нашедшие свое применение в производстве и являющиеся базой для многих современных покрытий. К таким относятся: химико-термический метод (цианирование); плазменное азотирование; плазменное нанесение покрытий типа TiN, в том числе и многослойных, градиентных покрытий.

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 

  1. Конструкционные материалы. Под ред, Б.Н. Арзамасова. Москва, изд «Машиностроение», 1990.
  2. Технология конструкционных материалов. Под ред. А.М. Дальского. Москва, изд «Машиностроение», 1985.
  3. Технология и свойства спеченных твердых сплавов и изделий из них - Панов B.C., Чувилин A.M. МИСИО, 2001
  4. Термодинамика сплавов. Вагнер К. Москва, 1957
  5. Производство и литье сплавов цветных металлов. Юдкин В.С. М., 1967
  6. Диаграммы фаз в сплавах. М., 1986 Коротич В.И., Братчиков С.Г. Металлургия черных металлов. М., 1987

 


Информация о работе Порошковые твердые сплавы