Полипропилен

Автор работы: Пользователь скрыл имя, 04 Мая 2013 в 18:33, реферат

Описание работы

Полипропилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации пропилена. Твердое вещество белого цвета. Выпускается в форме гомополимера и сополимеров, получаемых сополимеризацией пропилена и этилена в присутствии металлоорганических катализаторов при низком и среднем давлениях, в виде гранул стабилизированных, окрашенных или неокрашенных.

Содержание работы

Введение ………………………………………………………..
Получение ……………………………………………………...
Анализ ……………………………………………………….....
Свойства …………………………………………………… ….
Взаимосвязь структуры и свойств …………….............
Механические свойства ……………………………. ….
Диаграмма растяжения ……………………….………...
Диэлектрические свойства ……………………………..
Поверхностные свойства ……………………….………
Оптические свойства ……………………………………
Химическая стойкость …………………………….........
Токсикологические свойства ……………………..........
Применение полипропилена …………………………….........
Полипропилен как конструкционный материал ..…….
Тара и упаковка ...…………………………....………….
Волокно …………………………………….……............
Полипропилен как антикоррозионный материал ……..
Применение в машиностроении …………….…………
Применение в электротехнике ……………….…...........
Применение в медицине ………………………………..
Заключение …………………………………………………….
Список литературы ……………………………………..……...

Файлы: 1 файл

полипропилен.doc

— 122.00 Кб (Скачать файл)

Молекулярный  вес. Разные свойства полимера зависят от величины молекулярного веса в различной степени. Так, при механических нагрузках, связанных с малыми деформациями или малыми скоростями деформации, с изменением молекулярного веса (и то лишь у полимеров с низким молекулярным весом) такие свойства полимера, как предел текучести, модуль упругости или твердость, изменяются незначительно. Механические же свойства полимера, связанные с большими деформациями, с изменением молекулярного веса изменяются гораздо сильнее. Например, показатели предела прочности при растяжении, относительное удлинение при разрыве, ударная вязкость при изгибе и растяжении с уменьшением молекулярного веса снижаются.

Наибольшее влияние  величина молекулярного веса оказывает на вязкость растворов и расплавов полипропилена, так как под действием растворителей или в результате теплового движения цепей происходит настолько значительное уменьшение интенсивности межмолекулярного взаимодействия, что каждая макромолекула может представлять собой более или менее самостоятельную кинетическую единицу.

 

Механические  свойства

 

При оценке практической пригодности полипропилена для  той или иной цели первостепенное значение приобретают его механические свойства. Очевидно, что полимер с низким модулем упругости, т. е. с малой жесткостью, нельзя рекомендовать для изготовления технических деталей, подвергающихся большим механическим нагрузкам, и, наоборот, полимер с большой жесткостью оказывается непригодным там, где материал должен обладать свойством поглощать колебания с относительно высокой амплитудой.

Механические свойства полипропилена определяются его  структурным составом. Атактическая фракция в чистом виде обладает свойствами аморфно-жидких полимеров, изотактическая — свойствами высококристаллических полимеров, а механические свойства стереоблокполимера занимают промежуточное положение. Промышленный полипропилен состоит в основном из макромолекул изотактического строения, чем и обусловлены его высокие механические характеристики.

 

Диаграмма растяжения

 

Важным показателем, характеризующим  механические свойства полипропилена, является зависимость удлинения от напряжения, которую определяют, подвергая испытуемый образец растяжению на разрывной машине. При этом испытании под напряжением понимают усилие, действующее на единицу площади первоначального сечения образца

Зависимость относительного удлинения  от напряжения для стереоблочного полипропилена  принципиально отличается от таковой для изотактического полимера. Для достижения значительной деформации в данном случае достаточно небольшого напряжения, величина которого нарастает плавно (без скачков) вплоть до разрыва испытуемого образца. После снятия напряжения основная часть деформации быстро исчезает. Подобное поведение типично для каучукоподобных полимеров.

Наконец атактнческий полипропилен обнаруживает сильную пластическую (т. е. необратимую) деформацию при незначительном напряжении, величина которого почти не изменяется до разрушения образца.

Поведение полипропилена обычных марок при испытании на растяжение определяется содержанием кристаллического полимера. С увеличением содержания неизотактических фракций начальный модуль упругости и предел текучести снижаются , относительное удлинение при разрыве, как правило, возрастает, а предел прочности при растяжении несколько падает.

С изменением величины молекулярного  веса несколько изменяется форма кривой «напряжение—относительное удлинение» для полимеров с одинаковой степенью изотактичности. Предел текучести с уменьшением молекулярного веса повышается, а относительное удлинение при разрыве снижается, что связано с повышением степени кристалличности.

 

Диэлектрические свойства

 

Полипропилен, подобно  большинству синтетических полимеров, является прекрасным диэлектриком. Благодаря ничтожному водопоглощению его электроизоляционные свойства практически не изменяются даже после длительной выдержки в воде.

Поведение полипропилена  как диэлектрика в переменном электрическом поле во многом сходно с поведением полимера при воздействии на него динамической механической нагрузки. Индуцированные диполи звеньев цепей ориентируются по мгновенному направлению поля, в большей или меньшей степени отставая при этом от возбуждающей силы. Диэлектрическая проницаемость полипропилена почти не зависит от частоты поля и температуры.

Различие между значениями диэлектрической проницаемости  изотактического (e =2,28) и атактического (e =2,16) полимеров не настолько велико, чтобы по этому показателю можно было, например, оценивать содержание атактических фракций в полипропилене.

 

Поверхностные свойства

 

Поверхность полипропиленовых изделий отличается относительно  хорошей износостойкостью, близкой к износостойкости полиамидов. Стойкость к истиранию повышается с увеличением молекулярного веса и почти не зависит от стереоизомерного состава полипропилена .

Антифрикционные свойства при контакте полипропилена со сталью близки к аналогичным свойствам найлона в сухом состоянии. При применении смазки коэффициент трения полипропилена снижается в меньшей степени, чем в случае найлона.

Неполярный характер полипропилена обусловливает плохую адгезию клеев к его поверхности. Поэтому в настоящее время  нет надежных методов склеивания полипропиленовых деталей между  собой и с другими материалами.

 

Оптические свойства 

 

Степень прозрачности изделий  из полипропилена определяется прежде всего размером сферолитов, на которых происходит рассеяние света. Если удается воспрепятствовать образованию крупных сферолитов путем быстрого охлаждения тонкой пленки, то получается прозрачное изделие, которое даже в поляризационном микроскопе не обнаруживает двойного лучепреломления, типичного для сферолитной структуры. Чем меньше скорость охлаждения — а она при плохой теплопроводности полипропилена в значительной степени зависит также и от толщины изделия, — тем крупнее сферолиты и ниже прозрачность изделия. На прозрачность оказывают влияние и другие факторы, от которых зависят размеры сферолитов, в частности величина молекулярного веса и стереоизомерный состав полипропилена.

 

Химическая  стойкость

 

Полипропилен благодаря  своей парафиновой структуре  обладает высокой стойкостью к действию различных химических реагентов, даже в высоких концентрациях. При нормальной температуре изотактический полипропилен очень хорошо противостоит действию органических растворителей даже при длительном пребывании в них. Однако любое нарушение правильности структуры цепей, проявляющееся в уменьшении степени кристалличности полипропилена, вызывает снижение стойкости к растворителям. Эту особенность полипропилена Натта использовал для определения содержания в нем атактической, стереоблочной и изотактической структур. Спирты, кетоны, сложные и простые эфиры имеют относительно малое сродство к парафиновой цепи и поэтому не способны сольватировать цепи, прочно связанные в кристаллических участках. Однако они в большей или меньшей степени могут вызывать набухание или даже растворение атактических структур, особенно при высоких температурах. Углеводороды ввиду большего сродства к полипропилену растворяют атактические фракции уже при нормальной температуре. Интересное отклонение от такой закономерности обнаруживают сжиженные пропан и пропилен, растворяющая способность которых в области температур от -10 до -20° С выше, чем при нормальной температуре . По мере повышения температуры растворяющая способность высших углеводородов и их хлорпроизводных возрастает, так что ими можно экстрагировать и частично кристаллические стерео-блокполимеры. Наиболее эффективными растворителями являются ароматические и гидроароматические углеводороды, в которых при повышенных температурах растворяется изотактический полипропилен.

Из атмосферных влияний  самым сильным оказывается действие кислорода, активированное солнечным светом.

 

Токсикологические свойства

 

Чистый полипропилен атактической и изотактической структуры физиологически безвреден. Однако необходимо иметь в виду, что промышленный полипропилен содержит целый ряд примесей, о действии которых на организм пока известно очень мало. Поэтому требуется тщательная проверка физиологической безвредности этих веществ, прежде всего остатков катализатора, а также стабилизаторов и цветных пигментов.

 

Применение полипропилена

Полипропилен  как конструкционный материал

 

Производится очень  много сортов полипропилена с разнообразными свойствами. Практически не существует полипропилена общего назначения, который бы с одинаковым успехом использовался, например, как для производства волокна, так и для изготовления деталей машин или пленки. Успешное применение полипропилена для той или иной цели предполагает правильный выбор композиции (сорта, марки материала), которая по своим свойствам наиболее соответствует условиям переработки, назначению изделия и основным требованиям к его конструкции. При применении металлов для конструкционных целей соблюдение принципа подбора считается вполне естественным, при работе же с пластмассами этот принцип пока еще недостаточно прочно вошел в практику. Именно из-за незнания взаимосвязи областей применения и свойств пластических масс было допущено немало ошибок при внедрении их в технику.

 

Тара и упаковка

 

Полипропилен, в особенности  пленка из него, обладает всеми необходимыми свойствами для применения в этой области. По своим характеристикам полипропиленовая пленка близка к полиэтиленовой, причем по некоторым показателям превосходит ее. По сравнению с пленками из других термопластов полипропиленовая пленка имеет преимущество в отношении стойкости к нагреванию и действию химических реагентов (она может быть подвергнута стерилизации при температуре выше 100°С, что определяет целесообразность ее использования в пищевой и фармацевтическом промышленности). Ее достоинствами являются также превосходная гибкость, глянцевитость поверхности, прозрачность, незначительная паропроницаемость, нетоксичность, сравнительно легкая свариваемость и хорошая сопротивляемость усталостной коррозии.

Несколько лет назад  начали получать полипропиленовые пленки, ориентированные в одном или двух взаимно перпендикулярных направлениях. Ориентация пленки улучшает ее прочность, жесткость, влагоизоляционные свойства и прозрачность. Прочность пленки, ориентированной в двух направлениях, в 4—8 раз превышает прочность неориентированной. По свариваемости ориентированная пленка уступает неориентированной, поэтому главным потребителем ее как упаковочного материала следует считать галантерею, где она ценна благодаря своей исключительной прозрачности, отсутствию морщинистости - в этом отношении она лучше полиамидной пленки.

Вполне оправдало себя применение полипропилена для изготовления затворов (пробок), бутылей, контейнеров. Как указывается в литературе, полипропилен может успешно конкурировать с традиционными материалами в отношении экономичности изготовления этих изделий (полипропилен способен формоваться при исключительно коротких циклах). По прочности, ударостойкости и химической стойкости полипропилен превосходит полистирол, а по жесткости, сопротивлению истиранию и внешнему блеску - полиэтилен.

 

Волокно

 

Большое количество изотактического  полипропилена расходуется на производство волокна. Характерной особенностью полипропиленового волокна является его малая по сравнению с другими видами синтетических волокон плотность (0,905). Из 1 кг полипропилена можно получить 240000 м моноволокна диаметром 0,075 мм , т. е. больше, чем из любого другого синтетического материала, применяемого для производства моноволокон. Малая плотность полипропиленового моноволокна сочетается с исключительной прочностью и высокими эластическими свойствами. В то же время полипропиленовое волокно имеет меньший крип при постоянной нагрузке, более устойчиво к выцветанию и способно выдерживать без изменений воздействие более высоких температур (на 30° С), чем полиэтиленовое. Однако до сих пор не решена проблема стабилизации полипропиленового волокна от ультрафиолетового излучения. Это ограничивает возможность его использования в текстильной промышленности. Серьезными недостатками этого волокна являются также пониженная гигроскопичность (при использовании его для изготовления бельевых тканей), относительно плохая поверхностная окрашиваемость (поэтому нередко практикуется нерациональный метод окрашивания в массе) и не вполне удовлетворительная морозостойкость (20°С для ориентированного волокна).

С целью устранения этих недостатков полипропилен можно модифицировать разными методами, в частности введением в него специальных добавок (например, веществ с хорошими гидрофильными свойствами или содержащих реакционноспособные группы, необходимые для крашения, ультрафиолетовых стабилизаторов, морозостойких добавок и т. п.). Хотя проблемы модификации полипропилена разрешены еще далеко не полностью, некоторые зарубежные фирмы производят в опытных количествах надлежащим образом стабилизированные и окрашенные волокна, способные выдержать длительную эксплуатацию в условиях воздействия солнечных лучей (под открытым небом). Бесспорно, что решение указанных проблем принципиально возможно и является лишь делом времени.

 

Полипропилен  как антикоррозионный материал

 

Одно из типичных применений полипропилена — плакировка резервуаров, предназначенных для транспортировки и хранения химически агрессивных жидкостей, в том числе различных продовольственных товаров.

Были предприняты попытки изготовления полипропиленовых слоистых стеклопластиков различными методами. Основную трудность при этом представляет недостаточная адгезия полипропилена к стеклу.

Кроме того, из полипропилена  изготовляют корпуса насосов, работающих в агрессивных средах, шестерни, колпаки, трубопроводы и арматуру. Там, где требуется ударостойкость при высоких рабочих температурах, полипропилен может конкурировать с поливинилхлоридом.

 

Применение  в машиностроении

 

Низкий коэффициент  трения и высокая износоустойчивость полипропилена позволяют использовать этот перспективный материал для конструкционных и других целей в машиностроительной промышленности, в том числе и там, где химическая стойкость имеет второстепенное значение. Из полипропилена изготовляют, в частности, детали текстильного оборудования (бобины, сепараторы, веретена), вентиляторов, пылесосов, полотеров, холодильников, колпаки п винты машин для стрижки газонов и т. д.. Применение его для этих целей вполне обоснованно: вентиляторы с полипропиленовыми деталями создают меньше шума и более стойки к вибрации, чем металлические, к тому же они более безопасны при случайном попадании пальцев между лопастями, что особенно важно в случае настольных вентиляторов.

В автомобильной промышленности полипропилен пока не получил широкого применения. Это объясняется, в частности, тем, что рабочие части автомобилей проходят длительные испытания на прочность и надежность. Тем не менее европейские автомобилестроители в настоящее время уже изготовляют из полипропилена амортизаторы, приборные щитки, распределительные коробки, штепсельные соединения, блоки предохранителей, рефлекторы, клаксоны, трубопроводы установки для кондиционирования воздуха, педали подачи топлива (сформованные в виде одного целого), оконные детали, дверные прокладки, а также сидения, заполненные полиуретановым пенопластом . Рабочие части, непосредственно контактирующие с керосином или бензином (например, насосы и карбюраторы), целесообразнее изготовлять из полиамида, так как бензин и керосин размягчают полипропилен.

Информация о работе Полипропилен