Автор работы: Пользователь скрыл имя, 25 Мая 2012 в 20:25, реферат
Магнитные материалы подразделяют на магнитомягкие, магнитотвердые и материалы специализированного назначения.
К магнитомягким относят материалы с малой коэрцетивной силой (Нс < 800 А/м) и высокой магнитной проницаемостью. Они намагничиваются до насыщения в любых магнитных полях, обладают узкой петлей гистерезиса и малыми потерями на перемагничивание. Их используют в качестве сердечников дросселей, трансформаторов, электромагнитов и т.п.
Магнитомягкие ферриты применяются в качестве сердечников контурных катушек постоянной и переменной индуктивности, сердечников импульсных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают стержневые магнитные антенны, индуктивные линии задержки и др. Монокристаллы магнитомягких ферритов применяются при изготовлении магнитных головок записи и воспроизведения сигнала звукового и видеодиапазонов в магнитофонах, т.к. они обладают высоким удельным сопротивлением (что важно для уменьшения потерь) и большей твердостью по сравнению с металлическими.
Магнитодиэлектрики - это композиционные магнитомягкие материалы, состоящие из ферромагнетика и диэлектрика, применяемого в качестве связующего электроизоляционного материала. Основа должна обладать высокими магнитными свойствами, а связка - способностью образовывать между зернами сплошную электроизоляционную пленку одинаковой толщины. В качестве основы применяют карбонильное железо, альсифер, молибденовый пермаллой. Изолирующей связкой служат фенолформоальдегидные смолы, полистирол, стекло и др.
Суммарные потери мощности в магнитодиэлектрике определяются потерями на вихревые токи, последействие, гистерезис и диэлектрическими потерями. С уменьшением размера частиц ферромагнетика потери снижаются, особенно обусловленные вихревыми токами.
Магнитная
проницаемость
Из-за сильного
влияния размагничивающего
Достоинства магнитодиэлектриков: малые удельные потери энергии, слабая зависимость параметров от температуры, времени и напряженности магнитного поля, постоянство магнитной проницаемости в диапазоне частот, а недостаток - сравнительно малая начальная магнитная проницаемость.
Прессованные сердечники из магнитодиэлектриков применяются в катушках индуктивности контуров радиоприемных устройств, генераторов, фильтров и т.д.
Сердечники
на основе карбонильного железа обладают
высокой стабильностью, малыми потерями,
положительным температурным
Промышленность выпускает два класса карбонильного железа: Р (марки Р-10, Р-20, Р-100) - для радиоаппаратуры и Пс - для проводной связи. Цифры указывают максимальную рабочую частоту в МГц.
Альсифер обладает невысокой стоимостью. Его температурный коэффициент магнитной проницаемости зависит от содержания алюминия и кремния и может быть положительным, отрицательным или равным нулю.
4. Магнитные материалы
К магнитным материалам специального назначения относят магнитные материалы с прямоугольной петлей гистерезиса, СВЧ ферриты, магнитострикционные материалы.
Магнитные
материалы с прямоугольной
Материалы
с ППГ характеризуются
kпу = Br/Bmax .
Большим значением kпу обладают железоникелевые и железокобальтовые сплавы, легированные медью и некоторыми другими металлами. Эти сплавы обладают кристаллографической или магнитной текстурой. Наиболее высокую прямоугольность (до 0,98) имеют железоникелькобальтовые сердечники из лент микронной толщины.
Более широко распространены ферриты с ППГ, сердечники из которых более технологичны и дешевле. Прямоугольность петли гистерезиса достигается выбором определенного химического состава и условиями спекания феррита. Для сердечников с ППГ чаще применяются магний-марганцевые и литиевые ферриты.
Ферромагниты для устройств СВЧ используются в диапазоне длин волн от 1м до 1 мм. Электромагнитная энергия на таких частотах передается по волноводам, коаксиальным и полосковым линиям передачи. Ферритовый сердечник - вкладыш, помещенный внутрь волновода, изменяет структуру поля и скорость распространения волны. На этих частотах в ферритах используется магнитооптический эффект Фарадея, эффект ферромагнитного резонанса и зависимость магнитной проницаемости от величины внешнего поля.
Магнитооптический эффект Фарадея заключается в повороте плоскости поляризации высокочастотных колебаний в феррите за счет внешнего поля. Это позволяет изменять угол поворота плоскости поляризации и направлять энергию в разные каналы.
Ферромагнитный резонанс наблюдается при совпадении частоты внешнего поля с собственно частотой прецессии электронов, которой можно управлять с помощью постоянного подмагничивающего поля. При резонансе, волна распространяющаяся в прямом направлении, проходит без затухания, а в обратном - с затуханием. В результате получается высокочастотный вентиль. Это явление используется в антенных переключателях, в фазовращателях, модуляторах и т.д.
Для каждого диапазона длин волн используется определенная разновидность феррита. Например, для диапазона длин волн 0,8 - 2 см используются некоторые никель-цинковые ферриты, для диапазона 5 см и более используют ферриты с добавками хрома (феррохроматы) или алюминия (ферроалюмиты); феррогранат используется в диапазоне волн несколько десятков сантиметров.
Ферриты СВЧ маркируются буквами СЧ, впереди которых стоит цифра, указывающая длину волны в см. Цифра после букв СЧ указывает различие по свойствам.
В магнитострикционных материалах используется явление магнитострикции и магнитоупругий эффект - изменение магнитных свойств материала под влиянием механических воздействий. К магнитострикционным материалам относится никель, пермендюр (сплавы FeCo), альферы (сплавы FeAl), никелевый и никель-кобальтовые ферриты и др. Магнитострикционные ферриты имеют малые потери на вихревые токи по сравнению с никелем и металлическими сплавами, не подвержены действию химических агрессивных сред.
С помощью керамической технологии можно изготовить преобразователи любых форм и размеров. Магнитострикционные материалы применяются для изготовления сердечников электромеханических преобразователей для электроакустической и ультразвуковой технике, сердечника электромеханических и магнитострикционных фильтров, резонаторов и линий задержек.
5. Магнитотвердые материалы
Магнитотвердые материалы обладают высокой коэрцитивной силой и большой площадью петли гистерезиса.
Магнитотвердые материалы по способу изготовления подразделяются на следующие группы:
литые сплавы на основе Fe-Ni-Al и Fe-Ni-Al-Co, легированные медью, титаном, ниобием и др. элементами;
порошковые материалы, из которых постоянные магниты, получают прессованием порошков с последующей термообработкой;
прочие магнитные материалы (например, сплавы на основе редкоземельных металлов, устаревшие материалы, пластически деформируемые сплавы, эластичные магниты и др.).
По применению магнитотвердые материалы подразделяют на материалы, применяемые для изготовления постоянных магнитов и для длительного хранения информации (например, для звукозаписи).
Для получения высокой коэрцитивной силы в магнитном материале, необходимо затруднить процесс перемагничивания. Это достигается в материалах с большим количеством внутренних механических напряжений, дефектов кристаллической структуры и высокой магнитострикции, которые препятствуют смещению доменных границ. Кроме того большая коэрцетивная сила возникает в материале из однодоменных частиц, разделенных немагнитной фазой. Такие структуры получаются после определенной термообработки.
Магнитные свойства магнитотвердых материалов зависят от кристаллографической и магнитной текстур. Магнитная текстура создается путем охлаждения высококоэрцетивных сплавов в сильном магнитном поле. При этом сильно магнитная фаза ориентируется осями легкого намагничивания вдоль направления поля. Кристаллографическую текстуру создают методом направленной кристаллизации сплава, залитого в форму, при особых условиях охлаждения. Литые сплавы тверды и хрупки. После литья их можно подвергать только шлифовке.
Для получения магнитов со строго выдержанными размерами используют методы порошковой металлургии. Магниты из порошковых материалов подразделяют на металлокерамические, металлопластические, оксидные и из микропорошков.
Металлокерамические магниты получают прессованием металлических порошков без связывающего материала и спеканием их при высокой температуре. По магнитным свойствам они немного уступают литым, но дороже последних.
Металлопластические магниты изготавливают прессованием металлических порошков вместе с изолирующей связкой и подвергают нагреву до невысокой температуры, необходимой для полимеризации связывающего вещества. Имеют пониженные магнитные свойства, но обладают большим электрическим сопротивлением, малой плотностью и относительно дешевы. Оксидные магниты чаще всего изготавливают на основе ферритов бария и кобальта.
Магниты из феррита бария имеют высокую коэрцитивную силу, но малую остаточную индукцию, обладают большим удельным электрическим сопротивлением, дешевы, обладают высокой твердостью и хрупкостью и большой зависимостью магнитных свойств от температуры.
Кобальтовые
магниты характеризуются
Сплавы на основе редкоземельных металлов представляют собой интерметаллические соединения редкоземельного элемента (самария, церия и др.) с кобальтом. Они обладают наивысшими магнитными свойствами, полученными в настоящее время. Требуют защиты от окисления.
К числу
магнитотвердых материалов относятся
магнитные ленты для видео-
Большинство магнитных лент изготавливают на основе полиэтилентерефталата (лавсана), обладающего высокой механической прочностью. На поверхность основы наносят магнитный порошок, однодоменные частицы которого имеют вытянутую игольчатую форму длиной около 1 мкм при диаметре порядка 0,1 мкм и ориентированы вдоль направления поля при записи. Чем равномерней толщина магнитного слоя и мельче частицы, тем меньше шумовой фон при воспроизведении записи.
В качестве магнитного слоя используют оксиды g - Fe2O3, CrO2, чистое железо или ферромагнитные сплавы. Ленты на основе CrO2 обладают большой коэрцитивной силой и повышенной чувствительностью на высоких частотах. Использование магнитного слоя из чередующихся окислов g - Fe2O3 и CrO2 улучшают воспроизводимость низкочастотной части спектра. Наилучшими магнитными свойствами обладают ленты с рабочим слоем из мельчайших частиц химически чистого железа или ферромагнитных сплавов.