Контрольная работа по "Технические средства управления"

Автор работы: Пользователь скрыл имя, 12 Декабря 2010 в 17:16, контрольная работа

Описание работы

В настоящее время в мире накоплены огромные информационные массивы, содержащие актуальные сведения, при этом ежегодный информационный поток продолжает возрастать. Например, к середине 1980-х годов только в учреждениях федерального правительства США ежегодно составляли и обрабатывали около 30 миллиардов страниц документальной информации. Всего в США ежедневно формируют и копируют свыше 1 миллиарда страниц текста. К 1986 году в архивах США уже была накоплена информация, объем которой составил около 25 триллионов страниц машинописного текста (по другим сведениям, приблизительно 28 триллионов страниц).

Содержание работы

1. АНАЛИЗ, СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ
РАЗВИТИЯ НА ПРИМЕРАХ СРЕДСТВ МИКРОФИЛЬМИРОВАНИЯ………..3
2. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТЕ С ТСУ……...……………...….21
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………………27

Файлы: 1 файл

мИКРОФИЛЬМИРОВАНИЕ.doc

— 767.50 Кб (Скачать файл)

         На первый взгляд может показаться, что за 150 лет развития микрография не только не достигла прогресса в степени миниатюризации изображения, но даже заметно сдала свои позиции. Однако это совсем не так.

         Дело в том, что в микрографии важны не только кратность уменьшения, но и исходные размеры воспроизводимого оригинала (объекта). Не случайно Дж. Данцер остановил свой выбор на объекте такой величины, который на снимке после 160-кратного уменьшения имел размер 3 мм. Можно с уверенностью утверждать, что, если бы Данцер попытался получить с тем же уменьшением микрофотокопию объекта высотой не 50, а 5 см, его бы постигла неудача. Во-первых, объектив, который был в распоряжении Данцера, имел низкую разрешающую способность. Но главное препятствие состояло в несовершенстве светочувствительного материала. Дагерротипные пластинки и другие светочувствительные материалы того времени (например, гелиографические пластинки, калотипная бумага) были абсолютно не приспособлены к воспроизведению мелких деталей, т. е. имели низкую разрешающую способность, которая значительно уступала разрешению технических фотобумаг, выпускаемых в настоящее время.

         Современные материалы для микрографии по разрешающей способности в десятки, а в ряде случаев в сотни раз превосходят материалы, используемые Дж. Данцером. Поэтому сейчас успешно микрографируют как крупноформатные оригиналы (чертежи), так и деловую документацию, главным образом текст в машинописном и полиграфическом исполнении. Отметим, что высота шрифта у текстовых оригиналов сравнима с высотой изображения, полученного Данцером на фотокопии. Иными словами, средствами современной микрографии можно получить микрофотокопии, на которых воспроизводятся элементы изображения, в сотни раз более мелкие, чем во времена Данцера.

         Тем не менее Дж. Данцер по праву считается пионером микрографии, и его основная заслуга состоит в том, что он первым показал принципиальную возможность микрофотосъемки и продемонстрировал ее огромные технические возможности. Отметим, что Данцер получил не только первую микрофотографию объекта, но и первую микрофотографию документа. В Музее истории фотографии, организованном фирмой «Kodak» в Хэрроу (США), среди экспонатов имеются микрофотографии сборника шотландских баллад, сделанные Данцером.

         Работы Дж. Данцера привлекли внимание главным образом ученых. Известный английский астроном Джон Гершель в 1853 г., пользуясь технологией Данцера, получил микрофотографии списка литературы и примечаний, напечатанных мелким шрифтом. Через 4 года шотландец Д. Брюстер опубликовал статью о целесообразности хранения секретной информации в виде микрофотографий. Тем не менее прошло более 30 лет со дня открытия микрофотографии, прежде чем этот процесс получил первое относительно широкое практическое применение. В 1870 г. во время франко-прусской войны французский фотограф Роже Дагрон организовал регулярную связь с Парижем, осажденным немцами. Для передачи сообщений Дагрон использовал принцип микрофотокопирования, технологию которого он значительно усовершенствовал. Письма и документы печатали на листах бумаги форматом 60X43 см. 16 таких листов монтировали на панель и фотографировали, получая негатив форматом 35X65 мм. Негатив контактно копировали на коллодионную пластинку, отделяли светочувствительный слой и получали позитивную микроформу весом в несколько грамм, на которой содержалось до 3000 сообщений.

         Микроформы посылали с почтовыми голубями в Париж, где изображения с них проецировали на экран, с которого их переписывали. Очевидно, что с точки зрения современной технологии процесс Дагрона был весьма громоздким и трудоемким. Тем не менее, используя его, Французский генеральный штаб отправлял инструкции гарнизону Парижа, а родственники находящихся в осаде парижан могли посылать им частные сообщения.

         Следует отметить, что Р. Дагрон получал микрокопии, на которых элементы изображения имели размеры, приблизительно в 10 раз меньшие, чем на копиях Дж. Данцера. Это объясняется прежде всего тем, что при реализации процесса микрофильмирования Дагрон не испытывал трудностей, с которыми пришлось столкнуться Данцеру. Во-первых, были разработаны новые светочувствительные материалы с улучшенными характеристиками, во-вторых, усовершенствована съемочная аппаратура.

         Итак, первое "массовое" производство микрокопий относится к 1870—1871 гг. В последующие 20 лет фотографический процесс был значительно усовершенствован как за счет создания новых материалов, так и за счет модернизации съемочных камер. Однако эти успехи непосредственно не отразились на развитии микрографии, интерес к которой возобновился лишь после того, как в 1925 г. Джон Мак-Картни (США) получил патент на первую специализированную камеру для микрографии — аппарат динамической съемки, названный им «Check-о-graph», так как этот аппарат был создан для микрофильмирования банковских чеков с целью определения их подлинности. В 1930 г. эта камера после ряда усовершенствований выпускалась уже крупными партиями, кроме того, появились первые модели читальных аппаратов и были разработаны 35-миллиметровые контрастные галогенсеребряные пленки с разрешающей способностью около 250 мм _i. Все это создало благоприятные условия для коммерческого использования микрографии.

         В начале 1930-х годов микрофильмы на 35-миллиметровой пленке получили применение для архивизации деловых бумаг, для размножения копий в библиотеках и при подготовке чертежей.

         Массовый интерес к микрографии стимулировал дальнейшие разработки в этой области. Уже в 1933 г. была создана первая камера динамической съемки «Rekordak». Приблизительно в это же время И. Гебель приступил к разработке системы микрофильмирования на форматную пленку с использованием аппарата покадровой (статической) съемки. Его попытки увенчались успехом в 1939 г., когда была разработана технология получения микрофиши и создан модифицированный читальный аппарат для микрофиш. В 1940 г. Джордж Ланген предложил новый вид плоской микроформы — апертурную карту. Таким образом, за 10 лет (1930—1940 гг.) в микрографии был достигнут значительный прогресс.

         К 1950 г. информационные системы с применением рулонных микрофильмов, микрофильмов в отрезках и апертурных карт получили широкое применение вследствие необходимости обеспечения быстрого доступа к информации на микроформах. К этому времени были разработаны эффективные способы механизированного и автоматизированного поиска информации.

         Последующее десятилетие развития микрографии было связано в основном с разработкой новых светочувствительных материалов.

         В 1965 г. фирма «Kodak» выпустила галогенсеребряные пленки с термическим проявлением, обладающие разрешением 300 мм-1. До этого времени термопроявляемые галогенсеребряные материалы (главным образом фирмы «ЗМсо») применяли только в виде фотобумаг, отпечатки на которых не предназначались для длительного хранения из-за слабого фиксирования изображения. Термопроявляемые пленки « Kodak» в отношении сохраняемости изображения не уступали пленкам с мокрой химико-фотографической обработкой. Фирма «Kodak» сохраняла монополию на производство термопроявляемых пленок почти 20 лет до 1983 г., когда японская фирма «Canon corp. выпустила пленку «Silnova» для получения микрофиш в процессе с термопроявлением.

         Разработкой высококачественных термопроявляемых галогенсеребряных пленок для микрографии практически завершился первый (галогенсеребряный) этап развития микрографии. В настоящее время разработаны пленки высокого и сверхвысокого (до 3000 мм-1) разрешения, способы быстрой обработки фотоматериалов, в том числе термические и диффузионные. Основные фотографические характеристики галогенсеребряных фотоматериалов близки к теоретически достижимым. В связи с этим дальнейшее применение галогенсеребряных пленок для микрографии, по-видимому, возможно только после того, как будут созданы принципиально новые фотографические материалы и способы их обработки при получении изображения.

         Микрофильмирование  на сегодняшний день остается самым  надежным способом обеспечения долговременной сохранности информации. Микропленка  является единственным носителем с гарантированным сроком хранение более 100 лет и возможностью прочтения информации без использования специального оборудования, основанного на ЭВМ. Архивы, созданные на основе микроформ (рулонный микрофильм 16/35 мм или форматная микрофиша 105*148 мм), отличаются большой емкостью, низкой себестоимостью хранения, отсутствием необходимости в обновлении парка оборудования и программного обеспечения.

         Вместе с тем, наряду с «классической» технологией микрофильмирования, в последние годы активно развивается технология «цифрового» микрофильмирования, представляющая собой процесс переноса информации на микрофильм с использованием COM-систем. Развитие данной технологии обусловлено бурным ростом объемов электронного документооборота, появлением документов, существующих только в электронном виде (но требующих перевода на микропленку для долговременного хранения) и массовым переводом бумажных документов в «цифру» для создания электронных баз данных и каталогов.

         Технология цифрового  микрофильмирования в общем и целом предполагает такие же этапы что и при классическом микрофильмировании: экспонирование изображения на микропленку, химико-фотографическая обработка (проявка) микропленки, контроль качества обработанной микропленки. Если в классическом процессе микрофильмирования происходит экспонирование (съемка) бумажного оригинала, то в случае цифрового микрофильмирования вместе бумажного оригинала используется его электронный образ. Получить электронный образ возможно с использованием различного специализированного сканирующего оборудования. К примеру, для сканирования (оцифровки) сшитых документов (книги, брошюры, архивные дела, газетные подшивки и т.д.) необходимо использовать книжный сканер, для расшитых (листовых) большеформатных и длинных документов протяжной сканер, а для расшитых документов формата до А3 поточный (скоростной) сканер.

         Книжный сканер –  устройство, предназначенное для  оцифровки сшитых документов с максимально  бережным отношением к оригиналу, содержит в своей конструкции специальную  книжную колыбель обеспечивающую сохранность переплета оригинала, и систему освещения, не наносящую вред оригиналу. Книжный сканер может быть использован для оригиналов от формата А4 до формата А0.

         Протяжной сканер - устройство, осуществляющее оцифровку расшитых документов различной длины, содержит в своей конструкции специальный механизм протяжки, обеспечивающий сохранность оригинала, и систему освещения не наносящую вред оригиналу. Протяжной сканер может быть использован практически для любых расшитых (листовых) оригиналов.

         Процесс химико-фотографической  обработки микропленки предусматривает  использование проявочной машины и  аналогичен процессу, используемому  при классической технологии микрофильмирования. Проявочная машина подбирается, исходя из типа используемого носителя (рулонный микрофильм или форматная микрофиша) и предполагаемых объемов производства. Как правило, проявочная машина для обработки микрофиш является встроенным элементом COM-системы (SMA 105) (рисунок 1). Проявочная машина является важной частью лаборатории, поэтому к её выбору необходимо подходить очень тщательно.

         Современная лаборатория  микрофильмирования, в состав которой  входят: книжный сканер (или несколько, под разные типы оригиналов), протяжной  сканер, поточный сканер, COM-система, проявочная машина – способна выполнять задачи не только по переводу информации на микропленку, но и накоплению электронных образов документов для их дальнейшего использования в различных базах данных и электронных каталогах. Технология цифрового микрофильмирования позволяет обеспечить перевод абсолютного любого документа в любой форме на микропленку для дальнейшего хранения на протяжении столетий.

         Цифровое микрофильмирование является современной альтернативой  «классическому» и представляет собой полностью автоматический процесс печати электронных образов документов на микропленке. Если ваши документы предварительно отсканированы, вам остается только указать директорию хранения соответствующих файлов и одним щелчком отправить их на печать. Простота эксплуатации, полная автоматизация процесса, высокая скорость микрофильмирования, идеальное качество микрофильмов, минимальные требования к помещению – вот далеко не полный перечень преимуществ цифрового микрофильмирования перед «классическим».

         Система цифрового  микрофильмирования SMA 51 (рисунок 2) предназначена для перевода информации из электронного вида на черно-белую или цветную рулонную 16/35 мм микропленку. Она поставляется в комплекте с управляющим компьютером и программным обеспечением, позволяющим широко варьировать параметры экспозиции изображения документа в поле кадра. Технология проявки рулонного микрофильма после его экспозиции ничем не отличается от «классической». 
 

          
 

          
 
 
 
 
 
 

 

Рисунок 1. Система цифрового микрофильмирования (СОМ-система) SMA 105 
 
 
 
 
 
 
 

 

Рисунок 1. Система цифрового микрофильмирования (СОМ-система) SMA 51 
 
 
 
 
 
 
 

Таблица 1.

Технические характеристики системы цифрового

микрофильмирования SMA 105

Формат  носителя Форматная микрофиша 105*148 мм
Оптическое  разрешение А4 - 300 dpi, А3 - 200 dpi, А2 - 150 dpi
Скорость  печати Черно-белый режим  1-2 сек., 256 градаций серого  2-3 сек., цветной  3-5 сек.
Индексация Последовательная  индексация, имя файла под каждым кадром
Печать  заголовка 3 зоны заголовка:  
 1)Логотип или наименование организации (по желанию) 
 2) Название работы (3х40 знаков, проивольный русский текст) 
 3) Порядковый номер микрофиши, дата, имя автора

Информация о работе Контрольная работа по "Технические средства управления"