Автор работы: Пользователь скрыл имя, 22 Августа 2011 в 16:07, реферат
Магнитно-резонансная томография – один из самых перспективных и быстро совершенствующихся методов современной диагностики. Опираясь на последние достижения электроники, криогенной техники и новейшие информационные технологии, МР томография позволяет за несколько минут получить изображения, сравнимые по качеству с гистологическими срезами, а для получения высококачественных диагностических изображений время обследования пациента можно снизить до нескольких секунд.
Введение 3
1 Медико-биологическое обоснование 4
2 Обзор 7
3 Медико-технические требования 14
4 Разработка структурной схемы 16
5 Разработка блока: предварительный усилитель 18
Заключение 20
Список использованных источников 21
Содержание
Содержание 2
Введение 3
1
Медико-биологическое
2 Обзор 7
3 Медико-технические требования 14
4 Разработка структурной схемы 16
5 Разработка блока: предварительный усилитель 18
Заключение 20
Список
использованных источников 21
Введение
Магнитно-резонансная томография – один из самых перспективных и быстро совершенствующихся методов современной диагностики. Опираясь на последние достижения электроники, криогенной техники и новейшие информационные технологии, МР томография позволяет за несколько минут получить изображения, сравнимые по качеству с гистологическими срезами, а для получения высококачественных диагностических изображений время обследования пациента можно снизить до нескольких секунд. При этом врач получает возможность не только исследовать структурные и патологические изменения, но и оценить физико-химические, патофизиологические процессы всего обследуемого органа или его отдельной структуры, проводить функциональные исследования и т.д.[3]
МР
томография позволяет получить серию
тонких срезов, построить трехмерную
реконструкцию исследуемой
Но
каждый администратор, занимающийся проблемами
рентгенологии и диагностики, должен
четко понимать, сможет ли диагностическая
значимость МР томографии оправдать высокую
стоимость некоторых МР приборов (особенно
сверхпроводящих) и те затраты, которые
требуются на их эксплуатацию в повседневной
медицинской практике.
1
Медико-биологическое обоснование
Магнитно-резонансная томография (МРТ) – метод получения изображения внутренних структур тела человека при помощи магнитно-резонансного томографа. Метод позволяет оценивать как анатомические, так и функциональные особенности строения[4].
Для проведения ЯМР исследования необходимо поместить объект в мощное, статическое и однородное в пространстве (в идеальном случае) магнитное поле, создающее внутри тканей изображаемого объекта макроскопическую ядерную намагниченность.
В ЯМР томографии регистрация сигнала происходит от резонирующих ядер, имеющих как спин, так и магнитный момент. Такими ядрами являются водород 1Н, 2Н, углерод 13С, азот 14N, фтор 19F, натрий 23Na, фосфор 31Р. Чаще всего в МРТ используются протоны водорода 1Н по двум причинам: высокой чувствительности к МР сигналу и их высокому естественному содержанию в биологических тканях[2].
Под воздействием сильного магнитного поля спины протонов ядер водорода изменяют свое положение и располагаются вдоль оси магнитного поля (рисунок 1.1). Воздействие магнитного поля и радиочастотного излучения на протоны не постоянно, с заданными силой, частотой и временем, а протоны после воздействия на них радиочастотного сигнала вновь возвращаются в исходное положение – так называемое «время релаксации» (T1 и T2).
Рисунок 1.1 – Распределение ядер при отсутствии (а) и наличии (б)
внешнего магнитного поля
Воздействие магнитного поля и радиочастотного импульса на протоны ядер водорода заставляет их вращаться относительно новых осей в течение очень короткого периода времени, что сопровождается выделением и поглощением энергии, формированием своего магнитного поля. Регистрация этих энергетических изменений и является основой МРТ-изображения. Способность подобного смещения зависит от гидрофильности тканей, их химического состава и структуры. Нормальные клетки органов и тканей, не пораженных болезненным процессом, имеют один уровень сигнала. «Больные» клетки – это всегда другой, измененный сигнал в той или иной степени. На изображении измененные патологическим процессом участки тканей и органов выглядят иначе, чем здоровые. Это и есть основа медицинского диагностического изображения. Главная задача данной аппаратуры заключается в получении максимально информативного изображения быстро и качественно, а также безопасно для пациента[6].
Чтобы добиться уменьшения времени реконструкции изображения нужно увеличивать индукцию главного магнита. Это объясняется возможностью применения при большой индукции «быстрых» последовательностей, например, последовательности «градиентное эхо» и малоугловых. Также при индукции свыше 1,5 Тл появляется возможность кроме ядер водорода (протонов) включить в сбор данных об организме тяжелые ядра натрия и фосфора, которые несут очень важную информацию о метаболизме. При более низкой индукции магнитный резонанс ядер этих атомов невозможен.
Установлено, что если индукция будет равна 0,12 Тл, то частота ЯМР для протонов составит 5 МГц. Эти частоты лежат в диапазоне коротких радиоволн, которые считаются безвредными. И только в очень сильных магнитных полях (до 3 Тл) частота ЯМР может быть достаточно большой – 120 МГц. Это нужно учитывать при разработке современных МРТ.
Для примера рассмотрим таблицу 1.1, по которой можно проследить какая нужна напряженность магнитного поля для построения изображения некоторых тканей головного и спинного мозга.
Таблица 1.1 – Значения индукции магнитного поля[1]
Ткань мозга | Индукция магнитного поля В0, Тл |
Серое
вещество
Белое вещество Ликвор Жир Кровь |
0,5-1,0
1,0-1,5 1,0-1,5 0,5-1,0 1,5 |
Рассмотрим некоторые подострые опасности при проведении МРТ.
В
экспериментах было установлено, что
с порога напряженности в 4 Тл у
лиц наблюдалась некоторая
Таким
образом, рассмотрев принципы проведения
МРТ и возможные опасности, есть достаточно
данных для последующей разработки магнитно-резонансного
томографа.
2
Обзор
Системы МРТ в основном отличаются типами главных магнитов. В выпускаемых МРТ используются три типа магнитов: резистивные, сверхпроводящие (криогенные) и постоянные.
Резистивные магниты представляют собой систему катушек с конечным сопротивлением, по которым протекает постоянный ток. Они могут создать поле с относительно небольшой индукцией до 0,4 Тл и используются в МРТ, дающих изображения только «протонного» типа. Однако для создания даже такой сравнительно небольшой индукции требуются большие ток и мощность (так для магнита МРТ «ИМТТОМ» порядка 200 А и 60 кВт). Причем вся подводимая мощность превращается в тепло, которое необходимо отводить.
Именно такие томографы представляет собой наиболее сложную систему, состоящую из большого числа узлов различного назначения и размещенную на большой площади. Это связано со сложной энергетической установкой для питания главного магнита и с системой водяного охлаждения.
Структурная
схема системы МРТ с
В МРТ все субсистемы, участвующие в сборе и обработке информации, работают под управлением ЭВМ. Свои управляющие функции ЭВМ осуществляет через электронный блок управления – крейт 11. Отсюда идут аналоговые и цифровые управляющие сигналы и команды в РЧ передатчик 10 и источники питания градиентных катушек 8. В этих блоках генерируются сигналы большой мощности и выделяются значительные тепловые потери. Поэтому они оформлены в самостоятельные конструктивные узлы. Источники питания градиентной системы, по существу, представляют собой усилители мощности и размещены в шкафах в одном помещении с источником питания главного магнита. Там же находятся и основные узлы контроля системы охлаждения 1.
1 –
система охлаждения, 2 – экранирующая
камера, 3 – резистивный магнит, 4 – источник
питания резистивного магнита, 5 – градиентная
катушка,
6 – радиочастотная катушка, 7 – блок фильтрации,
8 – источник питания градиентной катушки,
9 – предварительный усилитель, 10 – радиочастотный
передатчик, 11 – крейт, 12 – ПЭВМ
Рисунок
2.1 – Структурная схема МРТ
с резистивным магнитом
Магнитная система МРТ, помещается в специальной комнате, пол, стены и потолок которой обтягиваются тонкой металлической сеткой 2. Она служит для защиты от помех. Тем не менее, помехи проникают и вносят искажения в МР-томограммы. И это объяснимо – РЧ сигналы, получаемые от тканей организма, сравнимы по величине с электромагнитными колебаниями, приходящими из эфира и составляют десятки микровольт. Помехи могут проникать также из электросети. Для их подавления все силовые токи – источников питания главного магнита, градиентной системы и передатчика – пропускаются через фильтры 7. Этой же цели служит применение предварительного усилителя РЧ сигнала 9, расположенного в непосредственной близости от РЧ катушки. Предварительно усиленный РЧ сигнал с минимальной примесью помех, поступает в крейт, где дополнительно усиливается.
Системе водяного охлаждения 1 в МРТ такого типа отводится важная роль. Вода используется для отвода тепла не только от катушек главного магнита, но и от нагруженных силовых элементов источников питания главного магнита и градиентных систем. [4].
При индукции основного поля свыше 0,5 Тл применение резистивного магнита технически и экономически становится невозможным. Здесь им на смену приходят сверхпроводящие магниты. Катушки такого магнита помещают в кожух, заполненный жидким гелием, имеющим температуру –269оС.
Кожух с жидким гелием охвачен кожухом, заполняемым жидким азотом с температурой –196о С. Проводники катушек из ниобия-титана, находящиеся в жидком гелии, становятся сверхпроводниками, т.е. их сопротивление становится равным нулю.
Поэтому для запуска магнита достаточно подать в его обмотку импульс тока и затем замкнуть накоротко внешнюю цепь. После этого ток в катушках магнита может циркулировать годами. Однако при эксплуатации криогенного магнита возникают другие проблемы. С течением времени количество криогенного вещества уменьшается и их приходится дозаправлять[4]. Примером может служить МРТ «MAGNETOM Harmony».
Структурная схема системы МРТ со сверхпроводящим магнитом представлена на рисунке 2.2.
1– экранирующая
камера, 2 – кожух с жидким азотом, 3 – кожух
с жидким гелием, 4 – сверхпроводящий магнит,
5 – источник первичного импульса,
6 – градиентная катушка, 7 – радиочастотная
катушка, 8 – блок фильтрации, 9 – источник
питания градиентной катушки, 10 – предварительный
усилитель, 11 – радиочастотный передатчик,
12 – крейт, 13 – ПЭВМ