Магнитно-резонансная томография

Автор работы: Пользователь скрыл имя, 22 Августа 2011 в 16:07, реферат

Описание работы

Магнитно-резонансная томография – один из самых перспективных и быстро совершенствующихся методов современной диагностики. Опираясь на последние достижения электроники, криогенной техники и новейшие информационные технологии, МР томография позволяет за несколько минут получить изображения, сравнимые по качеству с гистологическими срезами, а для получения высококачественных диагностических изображений время обследования пациента можно снизить до нескольких секунд.

Содержание работы

Введение 3

1 Медико-биологическое обоснование 4

2 Обзор 7

3 Медико-технические требования 14

4 Разработка структурной схемы 16

5 Разработка блока: предварительный усилитель 18

Заключение 20

Список использованных источников 21

Файлы: 1 файл

Пояснительная записка.docx

— 1,021.24 Кб (Скачать файл)

Содержание 

Содержание 2

Введение 3

1 Медико-биологическое обоснование 4

2 Обзор 7

3 Медико-технические требования 14

4 Разработка структурной  схемы 16

5 Разработка блока: предварительный усилитель 18

Заключение 20

Список  использованных источников 21 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Введение 

     Магнитно-резонансная  томография – один из самых перспективных  и быстро совершенствующихся методов  современной диагностики. Опираясь на последние достижения электроники, криогенной техники и новейшие информационные технологии, МР томография позволяет за несколько минут получить изображения, сравнимые по качеству с гистологическими срезами, а для получения высококачественных диагностических изображений время обследования пациента можно снизить до нескольких секунд. При этом врач получает возможность не только исследовать структурные и патологические изменения, но и оценить физико-химические, патофизиологические процессы всего обследуемого органа или его отдельной структуры, проводить функциональные исследования и т.д.[3]

     МР  томография позволяет получить серию  тонких срезов, построить трехмерную реконструкцию исследуемой области, выделить сосудистую сеть и даже отдельные  нервные стволы. Такая реконструкция  оказывает неоценимую помощь врачу. Ранняя постановка диагноза позволяет своевременно начать лечение заболевания[1].

     Но  каждый администратор, занимающийся проблемами рентгенологии и диагностики, должен четко понимать, сможет ли диагностическая  значимость МР томографии оправдать высокую стоимость некоторых МР приборов (особенно сверхпроводящих) и те затраты, которые требуются на их эксплуатацию в повседневной медицинской практике. 
 
 
 
 

     1 Медико-биологическое обоснование 

     Магнитно-резонансная  томография (МРТ) – метод получения изображения внутренних структур тела человека при помощи магнитно-резонансного томографа. Метод позволяет оценивать как анатомические, так и функциональные особенности строения[4].

     Для проведения ЯМР исследования необходимо поместить объект в мощное, статическое и однородное в пространстве (в идеальном случае) магнитное поле, создающее внутри тканей изображаемого объекта макроскопическую ядерную намагниченность.

     В ЯМР томографии регистрация сигнала  происходит от резонирующих ядер, имеющих  как спин, так и магнитный момент. Такими ядрами являются водород  1Н, 2Н, углерод 13С, азот 14N, фтор 19F, натрий 23Na, фосфор 31Р. Чаще всего в МРТ используются протоны водорода 1Н по двум причинам: высокой чувствительности к МР сигналу и их высокому естественному содержанию в биологических тканях[2].

     Под воздействием сильного магнитного поля спины протонов ядер водорода изменяют свое положение и располагаются вдоль оси магнитного поля (рисунок 1.1). Воздействие магнитного поля и радиочастотного излучения на протоны не постоянно, с заданными силой, частотой и временем, а протоны после воздействия на них радиочастотного сигнала вновь возвращаются в исходное положение – так называемое «время релаксации» (T1 и T2).

     

Рисунок 1.1 – Распределение ядер при отсутствии (а) и наличии (б)                         

внешнего  магнитного поля

     Воздействие магнитного поля и радиочастотного  импульса на протоны ядер водорода заставляет их вращаться относительно новых осей в течение очень  короткого периода времени, что  сопровождается выделением и поглощением энергии, формированием своего магнитного поля. Регистрация этих энергетических изменений и является основой МРТ-изображения. Способность подобного смещения зависит от гидрофильности тканей, их химического состава и структуры. Нормальные клетки органов и тканей, не пораженных болезненным процессом, имеют один уровень сигнала. «Больные» клетки – это всегда другой, измененный сигнал в той или иной степени. На изображении измененные патологическим процессом участки тканей и органов выглядят иначе, чем здоровые. Это и есть основа медицинского диагностического изображения. Главная задача данной аппаратуры заключается в получении максимально информативного изображения быстро и качественно, а также безопасно для пациента[6]. 

     Чтобы добиться уменьшения времени реконструкции  изображения нужно увеличивать индукцию главного магнита. Это объясняется возможностью применения при большой индукции «быстрых» последовательностей, например, последовательности «градиентное эхо» и малоугловых. Также при индукции свыше 1,5 Тл появляется возможность кроме ядер водорода (протонов) включить в сбор данных об организме тяжелые ядра натрия и фосфора, которые несут очень важную информацию о метаболизме. При более низкой индукции магнитный резонанс ядер этих атомов невозможен.

     Установлено, что если индукция будет равна 0,12 Тл, то частота ЯМР для протонов составит 5 МГц. Эти частоты лежат в диапазоне коротких радиоволн, которые считаются безвредными. И только в очень сильных магнитных полях (до 3 Тл) частота ЯМР может быть достаточно большой – 120 МГц. Это нужно учитывать при разработке современных МРТ.

     Для примера рассмотрим таблицу 1.1, по которой можно проследить какая нужна напряженность магнитного поля для построения изображения некоторых тканей головного и спинного мозга.

Таблица 1.1 – Значения индукции магнитного поля[1]

Ткань мозга Индукция магнитного поля В0, Тл
Серое вещество

Белое вещество

Ликвор

Жир

Кровь

0,5-1,0

1,0-1,5

1,0-1,5

0,5-1,0

1,5

 

     Рассмотрим  некоторые подострые опасности  при проведении МРТ.

     В экспериментах было установлено, что  с порога напряженности в 4 Тл у  лиц наблюдалась некоторая задержка нервной проводимости, теоретически было предсказано, что с уровня в 6 Тл растет кровяное давление. У людей, помещенных в однородное постоянное магнитное поле, был отмечен рост амплитуды ЭКГ в зависимости от величины поля. Этот рост становился заметным при 0.3 Тл; при 2.0 Тл амплитуда возрастала в среднем на 400%. Полагают, что изменения ЭКГ не могут быть ассоциированы с каким-либо биологическим риском. Основным результатом взаимодействия РЧ полей с тканями является нагрев последних. Но пока даже в сильных магнитных полях не было достигнуто локального увеличения температуры более, чем на 1 градус[5]. Несмотря на то, что пока не было выявлено никаких чрезмерно опасных воздействий на живой объект МР исследования, необходимо и дальше проводить исследования в этой области, и предельно аккуратно подходить к повышению напряжённости поля в современных томографах.

     Таким образом, рассмотрев принципы проведения МРТ и возможные опасности, есть достаточно данных для последующей разработки магнитно-резонансного томографа. 
 
 

     2 Обзор 

     Системы МРТ в основном отличаются типами главных магнитов. В выпускаемых  МРТ используются три типа магнитов: резистивные, сверхпроводящие (криогенные) и постоянные.

     Резистивные магниты представляют собой систему  катушек с конечным сопротивлением, по которым протекает постоянный ток. Они могут создать поле с относительно небольшой индукцией до 0,4 Тл и используются в МРТ, дающих изображения только «протонного» типа. Однако для создания даже такой сравнительно небольшой индукции требуются большие ток и мощность (так для магнита МРТ «ИМТТОМ» порядка 200 А и 60 кВт). Причем вся подводимая мощность превращается в тепло, которое необходимо отводить.

     Именно  такие томографы представляет собой  наиболее сложную систему, состоящую из большого числа узлов различного назначения и размещенную на большой площади. Это связано со сложной энергетической установкой для питания главного магнита и с системой водяного охлаждения.

     Структурная схема системы МРТ с резистивным  магнитом представлена на рисунке 2.1.

     В МРТ все субсистемы, участвующие в сборе и обработке информации, работают под управлением ЭВМ. Свои управляющие функции ЭВМ осуществляет через электронный блок управления – крейт 11. Отсюда идут аналоговые и цифровые управляющие сигналы и команды в РЧ передатчик 10 и источники питания градиентных катушек 8. В этих блоках генерируются сигналы большой мощности и выделяются значительные тепловые потери. Поэтому они оформлены в самостоятельные конструктивные узлы. Источники питания градиентной системы, по существу, представляют собой усилители мощности и размещены в шкафах в одном помещении с источником питания главного магнита. Там же находятся и основные узлы контроля системы охлаждения 1.

     

1 –  система охлаждения, 2 – экранирующая камера, 3 – резистивный магнит, 4 – источник питания резистивного магнита, 5 – градиентная катушка,           6 – радиочастотная катушка, 7 – блок фильтрации, 8 – источник питания градиентной катушки, 9 – предварительный усилитель, 10 – радиочастотный передатчик, 11 – крейт, 12 – ПЭВМ 

Рисунок 2.1 – Структурная схема МРТ  с резистивным магнитом 

     Магнитная система МРТ, помещается в специальной  комнате, пол, стены и потолок которой обтягиваются тонкой металлической сеткой 2. Она служит для защиты от помех. Тем не менее, помехи проникают и вносят искажения в МР-томограммы. И это объяснимо – РЧ сигналы, получаемые от тканей организма, сравнимы по величине с электромагнитными колебаниями, приходящими из эфира и составляют десятки микровольт. Помехи могут проникать также из электросети. Для их подавления все силовые токи – источников питания главного магнита, градиентной системы и передатчика – пропускаются через фильтры 7. Этой же цели служит применение предварительного усилителя РЧ сигнала 9, расположенного в непосредственной близости от РЧ катушки. Предварительно усиленный РЧ сигнал с минимальной примесью помех, поступает в крейт, где дополнительно усиливается.

     Системе водяного охлаждения 1 в МРТ такого типа отводится важная роль. Вода используется для отвода тепла не только от катушек главного магнита, но и от нагруженных силовых элементов источников питания главного магнита и градиентных систем. [4].

     При индукции основного поля свыше 0,5 Тл применение резистивного магнита технически и экономически становится невозможным. Здесь им на смену приходят сверхпроводящие  магниты. Катушки такого магнита  помещают в кожух, заполненный жидким гелием, имеющим температуру –269оС.

     Кожух с жидким гелием охвачен кожухом, заполняемым жидким азотом с температурой –196о С. Проводники катушек из ниобия-титана, находящиеся в жидком гелии, становятся сверхпроводниками, т.е. их сопротивление становится равным нулю.

     Поэтому для запуска магнита достаточно подать в его обмотку импульс  тока и затем замкнуть накоротко  внешнюю цепь. После этого ток  в катушках магнита может циркулировать  годами. Однако при эксплуатации криогенного магнита возникают другие проблемы. С течением времени количество криогенного вещества уменьшается и их приходится дозаправлять[4]. Примером может служить МРТ «MAGNETOM Harmony».

     Структурная схема системы МРТ со сверхпроводящим магнитом представлена на рисунке 2.2.

1– экранирующая камера, 2 – кожух с жидким азотом, 3 – кожух с жидким гелием, 4 – сверхпроводящий магнит, 5 – источник первичного импульса,      6 – градиентная катушка, 7 – радиочастотная катушка, 8 – блок фильтрации, 9 – источник питания градиентной катушки, 10 – предварительный усилитель, 11 – радиочастотный передатчик, 12 – крейт, 13 – ПЭВМ 

Информация о работе Магнитно-резонансная томография